Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề nhé. Theo mình nghĩ thì không có căn 4 ở sau dấu.... Đây là vô hạn mà.
Ta có:
\(R=\)\(\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(=\)\(\dfrac{\sqrt{10}+3\sqrt{2}}{5+\sqrt{5}}+\dfrac{\sqrt{10}-3\sqrt{2}}{5-\sqrt{5}}\)
\(=\dfrac{4\sqrt{2}}{\sqrt{5}\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\dfrac{4\sqrt{2}}{4\sqrt{5}}=\sqrt{\dfrac{2}{5}}\)
Làm câu S tương tự như này rồi đối chiếu kết quả nha
Bài này may mình có thi qua rùi.
Đặt
\(A=\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}>0\)
=> \(A^2=4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}\)
=> A2 - A = 4
=> A2 - A - 4 = 0
Giải phương trình được 2 nghiệm:
\(A_1=\frac{1+\sqrt{17}}{2}\)
\(A_2=\frac{1-\sqrt{17}}{2}< 0\)( loại vì A>0)
Vậy \(A=\frac{1+\sqrt{17}}{2}< \frac{1+\sqrt{25}}{2}=\frac{1+5}{2}=3\)
Kết luận: \(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}< 3\)
-------------
Chắc bạn ko hiểu chỗ A2 - A = 4 nhỉ?
Bài này giải nhiều rồi. Thôi m trình bày thêm 1 lần nữa vậy. Lần sau tìm câu hỏi tương tự nha b.
Ta có:
\(A=\sqrt{4+\sqrt{4+\sqrt{4....}}}\) vô số dấu căn
\(\Leftrightarrow A^2=4+\sqrt{4+\sqrt{4+\sqrt{4....}}}\)
\(\Leftrightarrow A^2-A-4=0\)
\(\Leftrightarrow\orbr{\begin{cases}A=\frac{1-\sqrt{17}}{2}\left(l\right)\\A=\frac{1+\sqrt{17}}{2}=2,56< 3\end{cases}}\)
Từ đây ta có \(\sqrt{4+\sqrt{4+\sqrt{4....}}}< 3\)
Bài 1:
Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)
Số giá trị nguyên thỏa mãn điều kiện là:
\(\left(2+4\right)+1=7\)
Ta có: \(12>9\)
\(6\sqrt{3}>4\sqrt{5}\)
Do đó: \(12+6\sqrt{3}>9+4\sqrt{5}\)
\(\Leftrightarrow\sqrt{12+6\sqrt{3}}>\sqrt{9+4\sqrt{5}}\)
100 dấu căn nha
\(\sqrt{4+\sqrt{4+\sqrt{4+\sqrt{4+...}}}}< \sqrt{6+\sqrt{6+\sqrt{6+...\sqrt{6+\sqrt{9}}}}}\)(100 dấu căn)
=> \(VT< \sqrt{6+\sqrt{6+\sqrt{6+...\sqrt{6+3}}}}=\sqrt{6+\sqrt{6+\sqrt{6+..\sqrt{6+\sqrt{9}}}}}\)(99 dấu căn)
=> \(VT< \sqrt{6+3}=3\)