K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2021

\(A=\sqrt{12+\sqrt{12+\sqrt{12}}}+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6}}}}< \sqrt{12+\sqrt{12+\sqrt{16}}}+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{9}}}}\)\(=7\)

\(B=\sqrt{14}+\sqrt{11}>\sqrt{13,69}+\sqrt{10,89}=7\)

\(\Rightarrow A< B\)

6 tháng 7 2021

Ta có:

 \(12< 16\Rightarrow\sqrt{12}< \sqrt{16}=4\\ 6< 9\Rightarrow\sqrt{6}< \sqrt{9}=3\)

\(\Rightarrow A< \sqrt{12+\sqrt{12+4}}+\sqrt{6+\sqrt{6+\sqrt{6+3}}}=\sqrt{12+4}+\sqrt{6+3}=4+3=7\) (1)

Lại có :

\(B=\sqrt{14}+\sqrt{11}\Rightarrow B^2=25+2\sqrt{14.11}=25+2\sqrt{154}>25+2\sqrt{144}=25+2.12=49=7^2\)

Mà B > 0

\(\Rightarrow B>7\) (2)

Từ (1),(2) suy ra A<B

22 tháng 9 2018

    3.991546341         >                   2.997403267

chuc 1 bạn học tốt

22 tháng 9 2018

\(6< 9\Rightarrow\sqrt{6}< \sqrt{9}=3\)

\(\Rightarrow\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6}}}}< \sqrt{6+\sqrt{6+\sqrt{6+3}}}\)

\(=\sqrt{6+\sqrt{6+3}}\)\(=\sqrt{6+3}\)\(=3\)

\(12>9\Rightarrow\sqrt{12}>\sqrt{9}=3\)

\(\Rightarrow\sqrt{12+\sqrt{12+\sqrt{12}}}>\sqrt{12}>3\)

\(\Rightarrow\sqrt{12+\sqrt{12+\sqrt{12}}}>\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6}}}}\)

5 tháng 7 2019

Ta có: \(30< 36\)

=> \(\sqrt{30}< \sqrt{36}=6\)

=> \(\sqrt{30+\sqrt{30}}< \sqrt{30+6}=6\)

=> \(\sqrt{30+\sqrt{30+\sqrt{30}}}< \sqrt{30+6}=6\)

Cứ tiếp tực như vậy ta sẽ so sánh đc:

\(\sqrt{30+\sqrt{30+\sqrt{30+...+\sqrt{30}}}}< 6\)

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:
\(2\sqrt{12}>2\sqrt{9}=2.3=6>3\)

\(\sqrt{6}> \sqrt{5}\)

\(\Rightarrow 2\sqrt{12}+\sqrt{6}> 3+\sqrt{5}\)

Ta có: \(12>9\)

\(6\sqrt{3}>4\sqrt{5}\)

Do đó: \(12+6\sqrt{3}>9+4\sqrt{5}\)

\(\Leftrightarrow\sqrt{12+6\sqrt{3}}>\sqrt{9+4\sqrt{5}}\)

5 tháng 12 2021

Ta có: √12+6√3 = √9+6√3+√3

=3+√3 (1)ta co√9+4√5=√5+2 (2)từ (1) và (2) ta co√12+6√3>√9+4√5 

a: \(4\sqrt{7}=\sqrt{4^2\cdot7}=\sqrt{112}\)

\(3\sqrt{13}=\sqrt{3^2\cdot13}=\sqrt{117}\)

mà 112<117

nên \(4\sqrt{7}< 3\sqrt{13}\)

b: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)

\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)

mà 108>64

nên \(3\sqrt{12}>2\sqrt{16}\)

c: \(\dfrac{1}{4}\sqrt{84}=\sqrt{\dfrac{1}{16}\cdot84}=\sqrt{\dfrac{21}{4}}\)

\(6\sqrt{\dfrac{1}{7}}=\sqrt{36\cdot\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)

mà \(\dfrac{21}{4}>\dfrac{36}{7}\)

nên \(\dfrac{1}{4}\sqrt{84}>6\sqrt{\dfrac{1}{7}}\)

d: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)

\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)

mà 108>64

nên \(3\sqrt{12}>2\sqrt{16}\)