K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

mik làm câu a nhé

Ta có: 99^200= 99^2*100= (99^2)^100= 9801^100                     Vì 9801<9999 nên 9801^100< 9999^100.

Vậy 99^200< 9999^100

c: \(100C=\dfrac{100^{100}+100}{100^{100}+1}=1+\dfrac{99}{100^{100}+1}\)

\(100D=\dfrac{100^{101}+100}{100^{101}+1}=1+\dfrac{99}{100^{101}+1}\)

100^100+1<100^101+1

=>\(\dfrac{99}{100^{100}+1}>\dfrac{99}{100^{101}+1}\)

=>100C>100D

=>C>D

b: \(2020E=\dfrac{2020^{2022}+2020}{2020^{2022}+1}=1+\dfrac{2019}{2020^{2022}+1}\)

\(2020F=\dfrac{2020^{2021}+2020}{2020^{2021}+1}=1+\dfrac{2019}{2020^{2021}+1}\)

2020^2022+1>2020^2021+1(Do 2022>2021)

=>\(\dfrac{2019}{2020^{2022}+1}< \dfrac{2019}{2020^{2021}+1}\)

=>2020E<2020F

=>E<F

15 tháng 8 2023

hơi vô lí

 

6 tháng 7 2016

5^255 để nguyên, còn 2^572 tách ra thành 4^255 . 2^62 
bấm máy căn bậc 255 của 2^62 rồi nhân với 4, sau đó so sánh với 5 =>ok 
Con thứ 2: 
8^9+7^9+6^9 +.... + 1^9 < 8 . 8^9 = 8^10 
Mà 8^10 < 9^10 => 9^10 > 8^9 + 7^9 + 6^9 +...+ 1^9

k cho mình nha

9 tháng 10 2016

Viết rối qá chả thấy j.

\(99^2vs9999^{10}\)

\(9999^{10}=\left(101\cdot99\right)^{10}=101^{10}\cdot99^{10}\)

Vì \(99^{10}>99^2=>99^2< 9999^{10}\)

9 tháng 10 2016

a) Ta có: 2^91 = (2^13)^7 = 8192^7

5^35 = (5^5)^7 = 3125^7

Vì 8192 > 3125 nên 8192^7 > 3125^7

Vậy 2^91 > 5^35

b) Ta có: 9999^10 = 99^10 . 101^10

Vì 99^2 < 99^10 nên 99^2 < 99^10 . 101^10

Vậy 99^2 < 9999^10

c) Ta có: 2^300 = (2^6)^50 = 64^50

3^200 = (3^4)^50 = 81^50

Vì 49 < 64 < 81 nên 49^50 < 64^50 < 81^50

Vậy 49^50 < 2^300 < 3^200

d) 9^3/25^3 = (9/25)^3

3^6/2^12 = (3^2)^3/(2^4)^3 = 9^3/16^3 = (9/16)^3

Vì 9/25 < 9/16 nên (9/25)^3 < (9/16)^3

Vậy 9^3/25^3 < 3^6/2^12.

ta có 9999= 99 *101. 
do đó 9999^10 = 99 ^10 * 101^10 
còn 99^20 = 99^10 * 99^10 
vì 99^10 < 101^10 nên 99^10 * 99^10 < 99 ^10 * 101^10 . 
vậy 99^20 < 9999^10. 

3 tháng 7 2019

ta co:9999^10 = 99^10 x 99^10 x 2^10 = 99^200

        suy ra :9999^10=99^200

vay . . .

9 tháng 12 2016

a) Ta thấy số dưới lẫn số mũ của 536 lớn hơn 220 => 536>220

b)Ta có:\(99^{200}=99^{100}.99^{100}\)

\(9999^{100}=\left(99.101\right)^{100}=99^{100}.101^{100}\)

VÌ \(99^{100}.99^{100}< 99^{100}.101^{100}\)

Nên: \(99^{200}< 9999^{100}\)

c)Ta có: \(2^{150}=\left(2^3\right)^{50}=8^{50}\)

\(3^{100}=\left(3^2\right)^{50}=9^{50}\)

Vì \(8^{50}< 9^{50}\)nên : \(2^{150}< 3^{100}\)

d)\(\sqrt{26+2}=\sqrt{28}=5< x< 6\)

\(\sqrt{26}+\sqrt{2}=5< x< 6+1< y< 2\)

=> \(\sqrt{26+2}< \sqrt{26}+\sqrt{2}\)

Câu d mình l

5 tháng 8 2018

\(2^{50}=\left(2^5\right)^{10}=32^{10}\)

\(5^{20}=\left(5^2\right)^{10}=25^{10}\)

Suy ra: 250 > 520

b)

\(9^{200}=\left(9^2\right)^{100}=81^{100}\)

Suy ra: 99100 > 81100

5 tháng 8 2018

\(5^{202}=\left(5^2\right)^{101}=25^{101}\)

\(2^{505}=\left(2^5\right)^{101}=32^{101}\)

Suy ra: 5202 < 2505