Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=17/4096
B=-53/4096
vayA>B vi so am luon be hon so duong
Ta có:
\(4\left(1+5+5^2+...+5^9\right)=5\left(1+5+5^2+...+5^9\right)-\left(1+5+5^2+...+5^9\right)\)
\(=5+5^2+5^3+...+5^{10}-1-5-5^2-...-5^9\)
\(=5^{10}-1+\left(5-5\right)+\left(5^2-5^5\right)+..+\left(5^9-5^9\right)\)
\(=5^{10}-1\)
=> \(1+5+5^2+...+5^9=\frac{5^{10}-1}{4}\)
Tương tự: \(1+5+5^2+...+5^8=\frac{5^9-1}{4}\)
\(1+3+3^2+...+3^9=\frac{3^{10}-1}{2}\)
\(1+3+3^2+...+3^8=\frac{3^9-1}{2}\)
=> \(A=\frac{5^{10}-1}{5^9-1}>\frac{5^{10}-1}{5^9}=5-\frac{1}{5^9}>4;\)
\(B=\frac{3^{10}-1}{3^9-1}< \frac{3^{10}}{3^9-1}=3+\frac{3}{3^9-1}< 4;\)
=> A > B.
\(2.x=\frac{1+2+3+...+9}{1-2+3-4+5-6+7-8+9}+\frac{25.150-60.5+20.75}{1+2+3+...+99}\)
\(2.x=\frac{\left(9+1\right).9:2}{\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+9}+\frac{2.3.5^2.\left(5^2-2+2.5\right)}{\left(1+99\right).99:2}\)
\(2.x=\frac{45}{\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+9}+\frac{2.3.5^2.33}{100.99.\frac{1}{2}}\)
\(2x=\frac{45}{5}+\frac{50.99}{50.2.99.\frac{1}{2}}=9+\frac{1}{2.\frac{1}{2}}=9+1=10\)
=> 2x = 10
x = 5
Câu hỏi của ngo mai huong - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo.
OK
\(D=\frac{3}{8^3}+\frac{7}{8^4}=\frac{3.8}{8^4}+\frac{7}{8^4}=\frac{24+7}{8^4}=\frac{31}{8^4}\)
\(C=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{56}{8^4}=\frac{59}{8^4}\)
Mà 59>31 => D<C
\(D=\frac{3}{8^3}+\frac{7}{8^{\text{4}}}=\frac{3}{8^3}+\left(\frac{4}{8^4}+\frac{3}{8^4}\right)\\ \)
\(C=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\)
vì \(\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}>\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\\ =>D>C\)
ta co : A = 3/8^3+3/8^4+4/8^4
B=3/8^3+3/8^4+4/8^3
VI 4/8^4 <4/8^3 NEN A<B
có \(\frac{3}{8^3}+\frac{7}{8^4}=\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}\)
\(\frac{7}{8^3}+\frac{3}{8^4}=\frac{3}{8^3}+\frac{4}{8^3}+\frac{3}{8^4}\)
vì \(\frac{4}{8^4}