Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ thôi
A=\(\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
B=\(\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
\(10^8>10^7nen10^8-7>10^7-8\)
=> \(\frac{13}{10^8-7}< \frac{13}{10^7-8}hayB< A\)
\(M=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(N=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Ta có \(10^8-7>10^7-8\) \(=>\frac{13}{10^8-7}< \frac{13}{10^7-8}\) \(=>M< N\)
Vậy M<N
\(A=\frac{10^7+5}{10^7-8}=\frac{\left(10^7-8\right)+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{\left(10^8-7\right)+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\) nên \(\frac{13}{10^7-8}>\frac{13}{10^8-7}\)
\(\Rightarrow1+\frac{13}{10^7-8}>1+\frac{13}{10^8-7}\) do đó \(A>B\)
10^7+8/10^7-8<10^8+8/10^7-8
cho mik nhé
thnks !!!!!!!!!!!!!
Lời giải:
a.
\(A-B=\frac{7-3}{84}-\frac{7-3}{83}=\frac{4}{84}-\frac{4}{83}<0\\ \Rightarrow A< B\)
b.
\(A-1=\frac{13}{10^7-8}\\ B-1=\frac{13}{10^8-7}\)
Hiển nhiên $10^7-8< 10^8-7$
$\Rightarrow \frac{13}{10^7-8}> \frac{13}{10^8-7}$
$\Rightarrow A-1> B-1\Rightarrow A> B$
Ta có: \(10A=10\left(\frac{10^7+1}{10^8+1}\right)=\frac{10^8+10}{10^8+1}=\frac{10^8+1+9}{10^8+1}=1+\frac{9}{10^8+1}\)
\(10B=\frac{10^7+10}{10^7+1}=\frac{10^7+1+9}{10^7+1}=1+\frac{9}{10^7+1}\)
Vì \(10^8+1>10^7+1\Rightarrow\frac{9}{10^8+1}< \frac{9}{10^7+1}\)
\(\Rightarrow10A< 10B\)
\(\Rightarrow A< B\)
Lời giải:
\(A=\frac{10^7-5}{10^7-8}=\frac{10^7-8+3}{10^7-8}=1+\frac{3}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=1+\frac{13}{10^8-7}\)
Ta thấy: \(\frac{3}{10^7-8}=\frac{30}{10^8-80}> \frac{30}{10^8-7}> \frac{13}{10^8-7}\)
\(\Rightarrow 1+\frac{3}{10^7-8}> 1+\frac{13}{10^8-7}\Rightarrow A>B\)
dấu < nhé
trình bày cách s2 giúp mih vs