Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2\left(x^3+y^3\right)}{\left(x^4+y^2\right)\left(x^2+y^4\right)}=2.\dfrac{\left(x^3+y^3\right)}{x^4y^4+x^2y^2+x^6+y^6}\)
\(=2.\dfrac{\left(x^3+y^3\right)}{1+1+x^6+y^6}=2.\dfrac{x^3+y^3}{x^6+y^6+2x^3y^3}=2.\dfrac{x^3+y^3}{\left(x^3+y^3\right)^2}=\dfrac{2}{x^3+y^3}\left(1\right)\)
Áp dụng bất đẳng thức Cauchy ta có:
\(x^3+y^3+1\ge3\sqrt{xy.1}=3\)
\(\Rightarrow x^3+y^3\ge2\Rightarrow\dfrac{2}{x^3+y^3}\le1\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow A\le1\)
Dấu "=" xảy ra khi x=y=1.
Vậy MaxA là 1, đạt được khi x=y=1.
Đặt: \(E=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Ta có: \(F-E=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)
\(\Leftrightarrow F=E\)
Từ đó ta có:
\(2F=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{\left(x^2+y^2\right)}{2\left(x+y\right)}+\frac{\left(y^2+z^2\right)}{2\left(y+z\right)}+\frac{\left(z^2+x^2\right)}{2\left(z+x\right)}\)
\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)
\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)
\(\Rightarrow F\ge\frac{1}{4}\)
Dấu = xảy ra khi \(x=y=z=\frac{1}{3}\)
Bạn ơi, cho mình hỏi này
Sao có \(\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\) và sao có \(\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}\)
Giải đáp tận tình hộ mình nhé.
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
A = x +y +1 => A - 1 = x +y.
Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0
=> (A +1)(A +4) <= 0 => - 1 <= A <= -4
A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1
A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4
Vậy minA = -1 khi x = -1, y = 0
maxA = -4 khi x = -4, y = 0
\(Q=\left(x-3\right)\left(4x+5\right)+2019\)
\(=4x^2-7x-15+2019\)
\(=4x^2-7x+2004\)
\(=\left(2x-\frac{7}{4}\right)^2+\frac{32015}{16}\ge\frac{32015}{16}\forall x\)
Dấu "=" xảy ra<=>\(\left(2x-\frac{7}{4}\right)^2=0\Leftrightarrow2x=\frac{7}{4}\Leftrightarrow x=\frac{7}{8}\)
\(Q=x^2+\left(3-x\right)^2=\left[x+\left(3-x\right)\right]^2-2x\left(3-x\right)=3^2-2x\left(3-x\right)\)
đặt : t=2x.(3-x) => Q=9- t
\(Q\ge0\Rightarrow9-t\ge5\Rightarrow t\le4\)(*)
\(P=\left[x^2+\left(3-x\right)^2\right]^2+4x^2\left(3-x\right)^2=\left(9-t\right)^2+t^2\)
\(P=2t^2-18t+9^2=2\left(t^2-9.t\right)+9^2\)
\(P=2\left(t^2-2.\dfrac{9}{2}t+\dfrac{9^2}{4}\right)+9^2-\dfrac{9^2}{2}=2\left(t-\dfrac{9}{2}\right)^2+\dfrac{9^2}{2}\)
từ (*)
\(t\le4\Rightarrow\left(t-\dfrac{9}{2}\right)\le4-\dfrac{9}{2}=\dfrac{-1}{2}\Rightarrow\left(t-\dfrac{9}{2}\right)^2\ge\dfrac{1}{4}\)
\(P\ge2.\dfrac{1}{4}+\dfrac{9^2}{2}=\dfrac{1}{2}+\dfrac{81}{2}=\dfrac{82}{2}=41\)
đẳng thức khi t =4 <=> 2x(3-x) =4
<=>x^2 -3x =-2 <=>x^2 -3x+2=0 <=>x^2 -2x -(x-2)
<=>(x-1)(x-2) =0=>x={1;2}
Lời giải:
Đặt \(\left\{\begin{matrix} x=a\\ 3-x=b\end{matrix}\right.\). Theo điều kiện đb ta có: \(\left\{\begin{matrix} a+b=3\\ a^2+b^2\geq 5\end{matrix}\right.\)
\(\Rightarrow (a+b)^2-2ab\geq 5\Leftrightarrow 9-2ab\geq 5\)
\(\Leftrightarrow ab\leq 2\)
Ta có:
\(P=x^4+(3-x)^4+6x^2(3-x)^2\)
\(P=a^4+b^4+6a^2b^2=(a^2+b^2)^2+4a^2b^2\)
\(P=[(a+b)^2-2ab]^2+4a^2b^2=(9-2ab)^2+4a^2b^2\)
\(P=81+8a^2b^2-36ab=8(ab-2)^2-4ab+49\)
Ta có: \(\left\{\begin{matrix} (ab-2)^2\geq 0\\ ab\leq 2\end{matrix}\right.\) nên \(P\geq 0-4.2+49\Leftrightarrow P\geq 41\)
Vậy \(P_{\min}=41\)
Dấu bằng xảy ra khi \(ab=2\Leftrightarrow \text{x=2 or x=1}\)