Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left(n^2+n+2n+2-1\right)⋮\left(n+1\right)\\ \Rightarrow\left[n\left(n+1\right)+2\left(n+1\right)-1\right]⋮\left(n+1\right)\\ \Rightarrow n+1\inƯ\left(1\right)=\left\{1\right\}\\ \Rightarrow n=0\)
1) 2n+7=2(n+1)+5
để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1
=> n+1\(\in\) Ư(5) => n\(\in\){...............}
bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa
Từ bài 2-> 4 áp dụng như bài 1
Ta có 2n+7=2(n+1)+5
Vì 2(n+1
Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1
Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}
Lập bảng n+1 I 1 I 5
n I 0 I 4
Vậy n "thuộc tập hợp" {0;4}
n^2 - 1 chia hết cho 2 và 5 thì phải có tận cùng là 0
=> n^2 có tận cùng là 1
mà n^2 là số chính phương
=> n^2 thuộc {81;121;...}
mà đề bài yêu cầu tìm n nhỏ nhất nên n^2 phải nhỏ nhất = 81
=> n =9
Vậy n = 9 nhỏ nhất để n^2 - 1 chia hết cho 2 và 5
Ta có
3n+1 chia hết cho 2n-1
6n + 2 chia hết cho 2n-1
6n -3 + 5 chia hết cho 2n - 1
3(2n-1) + 5 chia hết cho 2n-1
5 chia hết cho 2n-1
=> 2n-1 thuộc Ư(5)
=> 2n-1 thuộc {1;-1;5;-5}
=> n thuộc {1;0;3;-2}
Hok tốt !