Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi mình mới phát hiện điều kì lạ là những câu hỏi ở đây giống hệt với h (tùy bài) nhưng chỉ đổi tên
\(A=2.2^2+3.2^3+...+n.2^n\)
\(2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
\(2A-A=\left(2.2^3+3.2^4+...+n.2^{n+1}\right)-\left(2.2^2+3.2^3+...+n.2^n\right)\)
\(A=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)
\(A=-2^2-\left(2^2+2^3+2^4+...+2^n\right)+n.2^{n+1}\)
\(A=-2^2-\left(2^{n+1}-2^2\right)+n.2^{n+1}\)
\(A=\left(n-1\right)2^{n+1}=\left(2n-2\right).2^n\)
Từ đây phương trình ban đầu tương đương với:
\(\left(2n-2\right).2^n=2^{n+34}\)
\(\Leftrightarrow\left(2n-2\right).2^n=2^n.2^{34}\)
\(\Leftrightarrow n-1=2^{33}\)
\(\Leftrightarrow n=2^{33}+1\)
25 < 33 = 27 < 34 < 35 = 243 < 260
Vậy n \(\in\){ 3;4;5 }.
a) \(2^n:4=16\Rightarrow2^n:2^2=2^4\Rightarrow2^{n-2}=2^4\Rightarrow n-2=4\Rightarrow n=6\)
b) \(6\cdot2^n+3\cdot2^n=9\cdot2^9\)
=> \(\left(6+3\right)\cdot2^n=9\cdot2^9\)
=> \(9\cdot2^n=9\cdot2^9\Rightarrow n=9\)
c) \(3^n:3^2=243\)
=> \(3^{n-2}=3^5\)
=> n - 2 = 5 => n = 7
d) 25 < 5n < 3125
=> 52 < 5n < 55
=> n \(\in\){3;4}
\(a,2^n=16\Leftrightarrow2^n=2^4\Leftrightarrow n=4\)
\(3^n=243\Rightarrow3^n=3^5\Leftrightarrow n=5\)
\(b,4^n=4096\Rightarrow4^n=4^6\Leftrightarrow n=6\)
\(5^n=15625\Rightarrow5^n=5^6\Leftrightarrow n=6\)
\(c,6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Leftrightarrow n=0\)
\(4^{n-1}=1024\Rightarrow4^{n-1}=4^5\Rightarrow n-1=5\Leftrightarrow n=6\)
\(a.\) \(2^n=16\Rightarrow2^n=2^4\Leftrightarrow n=4\)
\(3^n=243\Rightarrow3^n=3^5\Leftrightarrow n=5\)
\(b.\) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
\(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
\(c.\) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
\(4^{n-1}=1024\Rightarrow4^{n-1}=4^5\Rightarrow n-1=5\Rightarrow n=6\)
n=5
35=243