Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
Gợi ý:
ĐK: \(x\ge-5\)
pt <=> \(2\sqrt{2x^2+5x+12}+2\sqrt{2x^2+3x+2}=2x+10\)
<=> \(2x^2+5x+12+2\sqrt{2x^2+5x+12}+1-2x^2-3x-2+2\sqrt{2x^2+3x+2}-1=0\)
<=> \(\left(\sqrt{2x^2+5x+12}+1\right)^2-\left(\sqrt{2x^2+3x+2}-1\right)^2=0\)
<=> \(\left(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}\right)\left(\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}+2\right)=0\)
đến đây bn giải từng trường hợp ra nhé
Uầy , cách CTV Khánh làm đồ sộ vậy ? Bài này nhân liên hợp là ra mà . Và cái điều kiện x > -5 là điều kiện bình phương chớ ko phải ĐKXĐ đâu -.-
\(ĐKXĐ:x\in R\)
Vì VT > 0 nên VP > 0
<=> x + 5 > 0
<=> x > -5
Ta có: \(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}=x+5\)
\(\Leftrightarrow\frac{\left(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}\right)\left(\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}\right)}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)
\(\Leftrightarrow\frac{2x^2+5x+12-2x^2-3x-2}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)
\(\Leftrightarrow\frac{2x+10}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)
\(\Leftrightarrow\frac{2\left(x+5\right)}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(\frac{2}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}-1\right)=0\)
|_____________________A______________________|
Vì \(A>0\forall x\ge5\)
Nên x + 5 = 0
<=> x = -5 (Tm ĐKXĐ)
Chỗ dòng thứ 3:
b2=2x2+3x+2 nhé
Bài trên do cô giáo hướng dẫn cho mình,bây h mình trả lời cho chính câu hỏi của mình để các bạn có thể tham khảo.
Đặt a=\(\sqrt{2x^2+5x+12}\)
b=\(\sqrt{2x^2+3x+2}\)
=>a2=2x2+5x+12 và b2=2x2+2x+2
Ta có a+b=x+5. (1)
.a2-b2=2(x+5)
<=>a2-b2=2(a+b)
<=> a-b=2. (2)
Cộng (1) và (2) vế theo vế
ta được 2a=x+7
<=>2\(\sqrt{2x^2+5x+12}\)=x+7
<=>4(2x2+5x+12)=x2+14x+49
<=>7x2+6x-1=0
<=>(x+1)(7x-1)=0
<=>\(\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\) vậy pt có 2 nghiệm-1;-\(\dfrac{1}{7}\)
2) năm mới chúc nhau niềm vui ( cho bài dễ thôi )
Vt >/ 3 + 2 = 5
VP </ 5
dấu = xảy ra khi x =-1
1/ Đặt \(\sqrt{x^2+2}=t>0\Rightarrow x^2=t^2-2\)
\(t^2-2+\left(3-t\right)x-1-2t=0\)
\(\Leftrightarrow t^2-2t-3-\left(t-3\right)x=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+1\right)-\left(t-3\right)x=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-3=0\\t+1-x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=3\left(1\right)\\\sqrt{x^2+2}=x-1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2=7\Rightarrow x=\pm\sqrt{7}\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2+2=\left(x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2+2=x^2-2x+1\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-1}{2}\left(l\right)\)
Vậy nghiệm pt là \(x=\pm\sqrt{7}\)
2/
\(x^2+3-6x\sqrt{x^2+3}+9x^2-\sqrt{x^2+3}+3x-2=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3}-3x\right)^2-\left(\sqrt{x^2+3}-3x\right)-2=0\)
Đặt \(\sqrt{x^2+3}-3x=t\)
\(\Rightarrow t^2-t-2=0\) \(\Rightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)
TH1: \(\sqrt{x^2+3}-3x=-1\Rightarrow\sqrt{x^2+3}=3x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-1\ge0\\x^2+3=\left(3x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\8x^2-6x-2=0\end{matrix}\right.\) \(\Rightarrow x=1\)
TH2: \(\sqrt{x^2+3}-3x=2\Leftrightarrow\sqrt{x^2+3}=3x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\x^2+3=\left(3x+2\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\8x^2+12x+1=0\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-3+\sqrt{7}}{4}\)
3/ ĐKXĐ: \(\dfrac{3}{2}\le x\le\dfrac{5}{2}\)
\(1.\sqrt{2x-3}+1.\sqrt{5-2x}\le\sqrt{\left(1^2+1^2\right)\left(2x-3+5-2x\right)}=2\)
\(\Rightarrow VT\le2\)
\(VP=3\left(x^2-4x+4\right)+2=3\left(x-2\right)^2+2\ge2\)
\(\Rightarrow VT=VP\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2x-3=5-2x\end{matrix}\right.\) \(\Rightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
4/
ĐKXĐ: \(x\ge\dfrac{-5}{4}\)
\(x^2-2x+1+4x+5-6\sqrt{4x+5}+9=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{4x+5}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{4x+5}-3=0\end{matrix}\right.\) \(\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
Đặt \(\sqrt{2x^2+5x+12}=a\text{ và }\sqrt{2x^2+3x+2}=b\left(a\text{ và }b\ge0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=x+5\left(\text{✳}\right)\\a^2-b^2=2\left(x+5\right)\end{matrix}\right.\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)=2\left(a+b\right)\)
\(\Rightarrow a=b+2\text{. Thay vào }\left(\text{✳}\right)\)
\(\Rightarrow\left(b+2\right)+b=x+5\)
\(\Leftrightarrow b=\dfrac{x+3}{2}\)
\(\Rightarrow2\sqrt{2x^2+3x+2}=x+3\)
\(\Leftrightarrow8x^2+12x+8=x^2+6x+9\)
\(\Leftrightarrow\left(7x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=-1\end{matrix}\right.\)
☠ Bạn tự kết luận nha >..<"