K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2023

Để giải phương trình này, ta cần tách các căn bậc hai ra khỏi biểu thức. Hãy xem xét từng phần tử trong phương trình:

√3x^2 - 7x + 3 - √x^2 - 2 = √3x^2 - 5x - 1 - √x^2 - 3x + 4

Để tách căn bậc hai ra khỏi biểu thức, chúng ta có thể đặt:

A = √3x^2 - 7x + 3 B = √x^2 - 2 C = √3x^2 - 5x - 1 D = √x^2 - 3x + 4

Khi đó, phương trình trở thành:

A - B = C - D

Tiếp theo, ta sẽ bình phương cả hai phía của phương trình:

(A - B)^2 = (C - D)^2

(A - B)(A - B) = (C - D)(C - D)

Mở rộng và rút gọn phương trình, ta được:

A^2 - 2AB + B^2 = C^2 - 2CD + D^2

Thay A, B, C, D bằng giá trị đã định nghĩa ban đầu:

(√3x^2 - 7x + 3)^2 - 2(√3x^2 - 7x + 3)(√x^2 - 2) + (√x^2 - 2)^2 = (√3x^2 - 5x - 1)^2 - 2(√3x^2 - 5x - 1)(√x^2 - 3x + 4) + (√x^2 - 3x + 4)^2

Tiếp theo, ta sẽ giải phương trình đã thu gọn:

3x^2 - 7x + 3 - 2√3x^2 - 7x + 3√x^2 - 2 + x^2 - 2x + 1 = 3x^2 - 5x - 1 - 2√3x^2 - 5x - 1√x^2 - 3x + 4 + x^2 - 6x + 9

Rút gọn và sắp xếp lại các thành phần của phương trình, ta được:

(2√3 + 2)√x^2 - 2 - (2√3 + 2)√x^2 - 3x + 4 = -2x + 7

Tiếp theo, ta sẽ loại bỏ các căn bậc hai:

-2√3 - 2 = -2x + 7

Tiếp tục rút gọn và giải phương trình, ta được:

-2√3 = -2x + 9

2x = 9 + 2√3

x = (9 + 2√3) / 2

Vậy, giá trị của x là (9 + 2√3) / 2.

4 tháng 8 2017

\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)

\(pt\Leftrightarrow\left(\sqrt{3x^2-7x+3}-1\right)-\left(\sqrt{x^2-2}-\sqrt{2}\right)=\left(\sqrt{3x^2-5x-1}-1\right)-\left(\sqrt{x^2-3x+4}-\sqrt{2}\right)\)

\(\Leftrightarrow\dfrac{3x^2-7x+3-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x^2-2-2}{\sqrt{x^2-2}+\sqrt{2}}=\dfrac{3x^2-5x-1-1}{\sqrt{3x^2-5x-1}+1}-\dfrac{x^2-3x+4-2}{\sqrt{x^2-3x+4}+\sqrt{2}}\)

\(\Leftrightarrow\dfrac{3x^2-7x+2}{\sqrt{3x^2-7x+3}+1}-\dfrac{x^2-4}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x^2-5x-2}{\sqrt{3x^2-5x-1}+1}+\dfrac{x^2-3x+2}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)

\(\Leftrightarrow\dfrac{\left(x-2\right)\left(3x-1\right)}{\sqrt{3x^2-7x+3}+1}-\dfrac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x-1}+1}+\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\dfrac{3x-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x+1}{\sqrt{3x^2-5x-1}+1}+\dfrac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}\right)=0\)

Dễ thấy: \(\dfrac{3x-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x+1}{\sqrt{3x^2-5x-1}+1}+\dfrac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}< 0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

4 tháng 2 2016

\(\Leftrightarrow\sqrt{12-7x}-\sqrt{x^2-x}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)

\(\Rightarrow-\sqrt{3x^2-5x-1}-\sqrt{x^2-x}+\sqrt{x^2-3x+4}+\sqrt{12-7x}=0\)

=>\(x\approx-3,4579061804411\)

3 tháng 2 2016

ra số rất lẻ

29 tháng 7 2022

chịu thôi

27 tháng 12 2015

ai làm ơn làm phước tick cho mk lên 190 với

20 tháng 11 2017

(1)Phương trình đã cho tương đương với:
3x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4

⇔(x−2)(3x2−2+x2−3x+4+23x2−7x+3+3x2−5x−1)=0
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23≤x≤7

Phương trình đã cho tương đương với:

3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0

⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0

⇔x=6

vì với 23≤x≤7

thì: (33x−2+4+17−x−1+3x2+x−2)

NV
12 tháng 10 2020

a/ Giải rồi

b/ ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)

\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)

Pt trở thành:

\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)

\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)

\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)

\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)

\(\Leftrightarrow...\)

NV
12 tháng 10 2020

e/ ĐKXD: \(x>0\)

\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)

\(\Rightarrow t^2=x+\frac{1}{4x}+1\)

Pt trở thành:

\(5t=2\left(t^2-1\right)+4\)

\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)

\(\Leftrightarrow2x-4\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)

\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!