K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2022

- Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2-20x+28}=a>0\\3x^2-15x+20=b>0\end{matrix}\right.\)

- Khi đó, ta có hệ:

\(\left\{{}\begin{matrix}a=b\\a^2-\dfrac{4}{3}b=\dfrac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a^2-\dfrac{4}{3}a=\dfrac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a^2-\dfrac{4}{3}a-\dfrac{4}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\\left(a^2-\dfrac{4}{3}a+\dfrac{4}{9}\right)-\dfrac{16}{9}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\\left(a-\dfrac{2}{3}\right)^2-\dfrac{16}{9}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\\left(a-\dfrac{2}{3}-\dfrac{4}{3}\right)\left(a-\dfrac{2}{3}+\dfrac{4}{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\\left[{}\begin{matrix}a=2\\a=-\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=b=2\left(nhận\right)\\a=b=-\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{4x^2-20x+28}=2\\3x^2-15x+20=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-20x+24=0\\3x^2-15x+18=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x-2\right)\left(x-3\right)=0\\3\left(x-2\right)\left(x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

- Vậy \(S=\left\{2;3\right\}\)

14 tháng 8 2022

\(2\sqrt{x^2-5x+7}=3x^2-15x+20\)

đk x^2 - 5x + 7 > 0 

Đặt \(\sqrt{x^2-5x+7}\) = t 

\(2t=3t^2-1\Leftrightarrow3t^2-2t-1=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{1}{3}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2-5x+6=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)(tm) 

 

24 tháng 10 2021

\(PT\Leftrightarrow\left(\sqrt{4x^2-20x+28}-2\right)=3x^2-15x+18\\ \Leftrightarrow\dfrac{4x^2-20x+24}{\sqrt{4x^2-20x+28}+2}=3\left(x-2\right)\left(x-3\right)\\ \Leftrightarrow\dfrac{4\left(x-2\right)\left(x-3\right)}{\sqrt{4x^2-20x+28}+2}-3\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)\left(\dfrac{4}{\sqrt{4x^2-20x+28}+2}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\\dfrac{4}{\sqrt{4x^2-20x+28}+2}-3=0\left(1\right)\end{matrix}\right.\)

Vì \(\dfrac{4}{\sqrt{4x^2-20x+28}+2}\le2\Leftrightarrow\dfrac{4}{\sqrt{4x^2-20x+28}+2}-3\le-1< 0\)

Do đó \(\left(1\right)\) vô nghiệm

Vậy PT có nghiệm \(x=2;x=3\)

11 tháng 7 2023

a

ĐK:

 \(3-x\ge0\\ \Leftrightarrow x\le3\)

\(\sqrt{x^2-3x+2}=3-x\\ \Leftrightarrow x^2-3x+2=\left(3-x\right)^2=9-6x+x^2\\ \Leftrightarrow x^2-3x+2-9+6x-x^2=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\dfrac{7}{3}\left(nhận\right)\)

Thử lại: \(\sqrt{\left(\dfrac{7}{3}\right)^2-3.\dfrac{7}{3}+2}=\dfrac{2}{3}>0\)

Vậy phương trình có nghiệm duy nhất \(x=\dfrac{7}{3}\)

b

\(\sqrt{4x^2-20x+25}=\sqrt{\left(2x\right)^2-2.2x.5+5^2}=\sqrt{\left(2x-5\right)^2}=\left|2x-5\right|\)

Phương trình trở thành:

\(\left|2x-5\right|+2x=5\) (1)

Với \(x< \dfrac{5}{2}\) thì (1) \(\Leftrightarrow5-2x+2x=5\Leftrightarrow5=5\) 

=> Với \(x< \dfrac{5}{2}\) thì phương trình có nghiệm với mọi x \(< \dfrac{5}{2}\) (I)

Với \(x\ge\dfrac{5}{2}\) thì (1)

 \(\Leftrightarrow2x-5+2x=5\\ \Leftrightarrow2x-5+2x-5=0\\ \Leftrightarrow4x=10\\ \Leftrightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\left(nhận\right)\left(II\right)\)

Từ (I), (II) kết luận phương trình có nghiệm với mọi \(x\le\dfrac{5}{2}\)

c

\(\Leftrightarrow\left|3-2x\right|=4\) (1)

Nếu \(x\le\dfrac{3}{2}\) thì (1)

\(\Leftrightarrow3-2x=4\\ \Leftrightarrow2x=-1\\ \Leftrightarrow x=-\dfrac{1}{2}\left(nhận\right)\)

Nếu \(x>\dfrac{3}{2}\) thì (1)

\(\Leftrightarrow2x-3=4\\ \Leftrightarrow2x=7\\ \Leftrightarrow x=\dfrac{7}{2}\left(nhận\right)\)

Vậy phương trình có 2 nghiệm \(S=\left\{-\dfrac{1}{2};\dfrac{7}{2}\right\}\)

a: =>x^2-3x+2=x^2-6x+9 và x<=3

=>3x=7 và x<=3

=>x=7/3(loại)

b: =>|2x-5|=5-2x

=>2x-5<=0

=>x<=5/2

c: =>|2x-3|=4

=>2x-3=4 hoặc 2x-3=-4

=>x=-1/2 hoặc x=7/2

AH
Akai Haruma
Giáo viên
1 tháng 10 2021

Lời giải:

a. ĐKXĐ: $x\geq 0$

$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$

$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$

$\Leftrightarrow 13\sqrt{2x}=28$

$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$

$\Leftrightarrow 2x=\frac{784}{169}$

$\Leftrightarrow x=\frac{392}{169}$

b. ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=2$

$\Leftrightarrow x-5=4$

$\Leftrightarrow x=9$ (tm)

c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$

PT $\Leftrightarrow \frac{3x-2}{x+1}=9$

$\Rightarrow 3x-2=9(x+1)$

$\Leftrightarrow x=\frac{-11}{6}$ (tm)

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

NV
9 tháng 11 2019

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\ge0\\2x-5=b\end{matrix}\right.\) \(\Rightarrow4x^2-15x+20=b^2+5a^2\)

Phương trình trở thành:

\(\sqrt{b^2+5a^2}=2b+7a\) (\(2b+7a\ge0\))

\(\Leftrightarrow b^2+5a^2=\left(2b+7a\right)^2\)

\(\Leftrightarrow44a^2+28ab+3b^2=0\)

\(\Leftrightarrow\left(22a+3b\right)\left(2a+b\right)=0\)

- Nếu \(22a+3b=0\Rightarrow b=-\frac{22}{3}a\Rightarrow2a+7b=2a-7.\frac{22}{3}a< 0\left(l\right)\)

- Nếu \(2a+b=0\Rightarrow b=-2a\Rightarrow2b+7a=5a>0\) thỏa mãn

Khi đó ta có:

\(2a=-b\Leftrightarrow2\sqrt{x-1}=5-2x\) (\(x\le\frac{5}{2}\))

\(\Leftrightarrow4\left(x-1\right)=\left(5-2x\right)^2\)

\(\Leftrightarrow4x^2-24x+29=0\Rightarrow\left[{}\begin{matrix}x=\frac{6+\sqrt{7}}{2}\left(l\right)\\x=\frac{6-\sqrt{7}}{2}\end{matrix}\right.\)

25 tháng 6 2019

\(\sqrt{3x+1}=x-1\)ĐK : \(x\ge1\)

\(\Leftrightarrow3x+1=\left(x-1\right)^2\)

\(\Leftrightarrow x^2-2x+1-3x-1=0\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=5\left(c\right)\end{matrix}\right.\)

\(\sqrt{4x^2-20x+25}=1\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=1\)

\(\Leftrightarrow\left|2x-5\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=1\\2x-5=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)