Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
=>x-2=16
hay x=18
b: \(\Leftrightarrow\left|3x+2\right|=4x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x\left(x>=-\dfrac{2}{3}\right)\\3x+2=-4x\left(x< -\dfrac{2}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-\dfrac{2}{7}\left(nhận\right)\end{matrix}\right.\)
c: \(\Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
\(\Leftrightarrow4\sqrt{x-2}=40\)
=>x-2=100
hay x=102
d: =>5x-6=9
hay x=3
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: x≥2)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\sqrt{\dfrac{1}{81}\left(x-2\right)}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{4}{3}\sqrt{x-2}=-4\)
\(-\sqrt{x-2}=-4\)
\(\sqrt{x-2}=4\)
\(\left|x-2\right|=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=16\\x-2=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\left(TM\right)\\x=-14\left(L\right)\end{matrix}\right.\)
Điều kiện xác định: x ≥ \(\dfrac{1}{3}\)
<=> \(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)
<=> \(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=\left(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}\right).\left(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}\right)\)= \(\left(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}\right).\left(1-\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}\right)=0\)<=>\(\left[{}\begin{matrix}\sqrt{4x^2+5x+1}=\sqrt{4x^2-4x+4}\left(1\right)\\1=\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}\left(2\right)\end{matrix}\right.\)
từ (1) ta có \(\sqrt{4x^2+5x+1}=\sqrt{4x^2-4x+4}\)
<=> 4x2 + 5x + 1 = 4x2 - 4x + 4
<=> 9x = 3 => x = \(\dfrac{1}{3}\)
từ (2) ta có: 1 = 8x2 + x + 5 - \(2\sqrt{16x^4+4x^3+16x+4}\)
<=> 8x2 + x + 4 = 2\(\sqrt{16x^4+4x^3+16x+4}\)
ta có xét delta VT thấy pt vô nghiệm
VP dễ thấy phương trình có nghiệm x = \(\dfrac{-1}{4}\);-1
ta suy ra 2 vế phương trình không bằng nhau nên pt (2) vô nghiệm.
vậy S={\(\dfrac{1}{3}\)}
nếu bạn xem rồi thì cho mình 1 like nha ghi bài giải hơi mệt nên mong bạn cho mình một like
b: Sửa đề: \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)(1)
ĐKXĐ: \(x>=5\)
\(\left(1\right)\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
=>\(2\sqrt{x-5}=4\)
=>\(\sqrt{x-5}=2\)
=>x-5=4
=>x=9(nhận)
c: ĐKXĐ: \(\dfrac{3x-2}{x+1}>=0\)
=>\(\left[{}\begin{matrix}x>=\dfrac{2}{3}\\x< -1\end{matrix}\right.\)
\(\sqrt{\dfrac{3x-2}{x+1}}=3\)
=>\(\dfrac{3x-2}{x+1}=9\)
=>9(x+1)=3x-2
=>9x+9=3x-2
=>6x=-11
=>\(x=-\dfrac{11}{6}\left(nhận\right)\)
d: ĐKXĐ: \(\left\{{}\begin{matrix}5x-4>=0\\x+2>0\end{matrix}\right.\Leftrightarrow x>=\dfrac{4}{5}\)
\(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\)
=>\(\sqrt{\dfrac{5x-4}{x+2}}=2\)
=>\(\dfrac{5x-4}{x+2}=4\)
=>5x-4=4x+8
=>x=12(nhận)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
ĐK:\(x\le-1;x\ge-\frac{1}{4}\)
Ta có \(\sqrt{4x^2+5x+1}+3=2\sqrt{x^2-x+1}+9x\)
\(\Leftrightarrow\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)
\(\Leftrightarrow\frac{\left(4x^2+5x+1\right)-\left(4x^2-4x+4\right)}{\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}}=9x-3\)
\(\Leftrightarrow\frac{9x-3}{\sqrt{4x^2+5x+1}+2\sqrt{x^2-x+1}}-9x+3=0\)
\(\Leftrightarrow\left(9x-3\right)\left(\frac{1}{\sqrt{4x^2+5x+1}+2\sqrt{x^2-x+1}}-1\right)=0\)
\(\Leftrightarrow9x-3=0\)(PT còn lại vô nghiệm)
\(\Leftrightarrow x=\frac{1}{3}\)
Đặt ĐKXH:
Nhân liên hợp ta có:
\(\frac{9x-3}{\sqrt{4x^2+5x+1}+2\sqrt{x^2-x+1}}=9x-3\)
\(\Rightarrow x=\frac{1}{3}\)hoặc:
\(\sqrt{4x^2+5x+1}+2\sqrt{x^2-x+1}=1\)
Chuyển vế 1 trong 2 căn sang rồi bình phương lên giải phương trình hệ quả
Tự nhiên nhân liên hợp là sao hả bạn ?