K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5

Điều kiện:

 \(\left\{{}\begin{matrix}x+\dfrac{3}{x}=\dfrac{x^2+3}{x}\ge0\\\dfrac{x^2+7}{2\left(x+1\right)}\ge0\end{matrix}\right.\)

mà \(x^2\ge0\forall x\Rightarrow\left\{{}\begin{matrix}x^2+3>0\forall x\\x^2+7>0\forall x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2+3}{x}\ge0\\\dfrac{x^2+7}{2\left(x+1\right)}\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\2\left(x+1\right)>0\Leftrightarrow x+1>0\Leftrightarrow x>-1\end{matrix}\right.\)

\(\Leftrightarrow x>0\)

\(\sqrt{x+\dfrac{3}{x}}=\dfrac{x^2+7}{2\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{\dfrac{x^2+3}{x}}=\dfrac{x^2+7}{2\left(x+1\right)}\)

\(\Leftrightarrow\left(\sqrt{\dfrac{x^2+3}{x}}\right)^2=\left[\dfrac{x^2+7}{2\left(x+1\right)}\right]^2\)

\(\Leftrightarrow\dfrac{x^2+3}{x}=\dfrac{\left(x^2+7\right)^2}{\left[2\left(x+1\right)\right]^2}\)

\(\Leftrightarrow\dfrac{x^2+3}{x}=\dfrac{x^4+14x^2+49}{4\left(x+1\right)^2}=\dfrac{x^4+14x^2+49}{4\left(x^2+2x+1\right)}=\dfrac{x^4+14x^2+49}{4x^2+8x+4}\)

\(\Leftrightarrow\dfrac{\left(x^2+3\right)\left(4x^2+8x+4\right)}{x\left(4x^2+8x+4\right)}=\dfrac{x\left(x^4+14x^2+49\right)}{x\left(4x^2+8x+4\right)}\)

\(\Leftrightarrow\left(x^2+3\right)\left(4x^2+8x+4\right)=x\left(x^4+14x^2+49\right)\)

\(\Leftrightarrow x^2\left(4x^2+8x+4\right)+3\left(4x^2+8x+4\right)=x\left(x^4+14x^2+49\right)\)

\(\Leftrightarrow4x^4+8x^3+4x^2+12x^2+24x+12=x^5+14x^3+49x\)

\(\Leftrightarrow4x^4+8x^3+16x^2+24x+12=x^5+14x^3+49x\)

\(\Leftrightarrow x^5-4x^4+14x^3-8x^3-16x^2+49x-24x-12=0\)

\(\Leftrightarrow x^5-4x^4+6x^3-16x^2+25x-12=0\)

\(\Leftrightarrow x^5-x^4-3x^4+3x^3+3x^3-3x^2-13x^2+13x+12x-12=0\)

\(\Leftrightarrow x^4\left(x-1\right)-3x^3\left(x-1\right)+3x^2\left(x-1\right)-13x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^4-3x^3+3x^2-13x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^4-x^3-2x^3+2x^2+x^2-x-12x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^3\left(x-1\right)-2x^2\left(x-1\right)+x\left(x-1\right)-12\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-1\right)\left(x^3-2x^2+x-12\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^3-2x^2+x-12\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2+x^2-3x+4x-12\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[x^2\left(x-3\right)+x\left(x-3\right)+4\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-3\right)\left(x^2+x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x^2+x+4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(tm\right)\\x^2+x+\dfrac{1}{4}+\dfrac{15}{4}=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(tm\right)\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\end{matrix}\right.\)

Có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\forall x\)

\(\Rightarrow x^2+x+4=0\) vô nghiệm

Vậy: \(x\in\left\{1;3\right\}\)

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

28 tháng 8 2021

\(1,ĐKx\ge5\)

\(\sqrt{\left(x-5\right)\left(x+5\right)}+2\sqrt{x-5}=3\sqrt{x+5}+6\)

\(\Rightarrow\sqrt{x-5}\left(\sqrt{x+5}+2\right)-3\left(\sqrt{x+5}+2\right)=0\)

\(\Rightarrow\left(\sqrt{x+5}+2\right)\left(\sqrt{x-5}-3\right)=0\)

\(\left[{}\begin{matrix}\sqrt{x+5}=-2loại\\\sqrt{x-5}=3\end{matrix}\right.\)\(\Rightarrow x-5=9\Rightarrow x=14\)(TMĐK)

2a,ĐK \(x\ge0;x\ne9\)

,\(B=\dfrac{7\left(3-\sqrt{x}\right)-12}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}=\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}\)

\(M=\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(M=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

 

 

 

Bài 2: 

Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)

\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)

18 tháng 5 2021

\(2x^2+3x-5=0\)

\(< =>2x^2-2x+5x-5=0\)

\(< =>2x\left(x-1\right)+5\left(x-1\right)=0\)

\(< =>\left(x-1\right)\left(2x+5\right)=0\)

\(< =>\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

18 tháng 5 2021

\(\hept{\begin{cases}x+2y=1\\-3x+4y=-18\end{cases}}\)

\(< =>\hept{\begin{cases}-3x-6y=-3\\-3x-6y+10y=-18\end{cases}}\)

\(< =>\hept{\begin{cases}x+2y=1\\10y=-18+3=-15\end{cases}}\)

\(< =>\hept{\begin{cases}x+2y=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x-3=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x=4\\y=-\frac{3}{2}\end{cases}}}}\)

7 tháng 11 2023

\(a,\sqrt{\left(x-1\right)^2-\left(x^2-3\right)}=3\)

\(\Leftrightarrow\left(x-1\right)^2-\left(x^2-3\right)=9\)

\(\Leftrightarrow x^2-2x+1-x^2+3=9\)

\(\Leftrightarrow4-2x=9\)

\(\Leftrightarrow x=\dfrac{-5}{2}\)

\(b,\dfrac{x+3}{x}+\dfrac{x-3}{x-2}=2\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(2x-2\right)}{x\left(x-2\right)}=2\)

\(\Leftrightarrow\left(x-3\right)\left(2x-2\right)=2x\left(x-2\right)\)

\(\Leftrightarrow2x^2-8x+6=2x^2-4x\)

\(\Leftrightarrow-4x=-6\)

\(\Leftrightarrow x=1,5\)

7 tháng 11 2023

a) \(\sqrt{(x-1)^{2}- x^2-3)}=3\)

\(\Leftrightarrow \sqrt{x^2-2x+1-x^2+3}=3\)

\(\Leftrightarrow \sqrt{4-2x}=3\)

\(\Leftrightarrow 4-2x = 9\)

\(\Leftrightarrow 2x=-5\)

\(\Leftrightarrow x=-2.5\)

Vậy S = {-2.5}

2 tháng 11 2021

\(P=\dfrac{2+x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-1}\\ P=\dfrac{\left(2-\sqrt{x}\right)\left(x+\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)^2}\)

1:

\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)

\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)

NV
28 tháng 1 2021

a.

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\5\sqrt{x-2}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\\sqrt{x-2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-3}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)

NV
28 tháng 1 2021

b.

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne-4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{4x}{x+1}-\dfrac{10}{y+4}=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{19x}{x+1}=28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{28}{19}\\\dfrac{1}{y+4}=-\dfrac{4}{19}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}19x=28x+28\\4y+16=-19\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{9}\\y=-\dfrac{35}{4}\end{matrix}\right.\)

13 tháng 7 2023

Ta có: \(\left\{{}\begin{matrix}\dfrac{3}{\sqrt{x+y}}-\dfrac{2}{\sqrt{x-y}}=4\\\dfrac{2}{\sqrt{x+y}}-\dfrac{1}{\sqrt{x-y}}=5\end{matrix}\right.\)

Đặt: \(t=\sqrt{x+y}\) và \(k=\sqrt{x-y}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{t}-\dfrac{2}{k}=4\\\dfrac{2}{t}+\dfrac{1}{k}=5\end{matrix}\right.\)

Ta lại đặt: \(a=\dfrac{1}{t}\) và \(u=\dfrac{1}{k}\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a-2u=4\\2a+u=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a-2u=4\\4a+2u=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a-2u=4\\7a=14\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-2u=4\\a=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u=1\\a=2\end{matrix}\right.\)

Mà: 

\(u=1\Rightarrow\dfrac{1}{k}=1\Rightarrow k=1\)

\(a=2\Rightarrow\dfrac{1}{t}=2\Rightarrow t=\dfrac{1}{2}\)

Ta lại có:

\(k=1\Rightarrow\sqrt{x+y}=1\)

\(t=\dfrac{1}{2}\Rightarrow\sqrt{x-y}=\dfrac{1}{2}\)

Ta có hệ:

\(\left\{{}\begin{matrix}\sqrt{x-y}=1\\\sqrt{x+y}=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\x+y=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\2x=\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{8}-y=1\\x=\dfrac{5}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{8}\\x=\dfrac{5}{8}\end{matrix}\right.\)

Vậy \(x-\dfrac{5}{8};y=-\dfrac{3}{8}\)

Đặt 1/căn x+y=a; 1/căn x-y=b

Theo đề, ta có hệ:

3a-2b=4 và 2a+b=5

=>a=2 và b=1

=>x+y=1/4 và x-y=1

=>x=5/8 và y=-3/8

a: Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)

\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

b: Ta có: \(\left(\sqrt{x}+1\right)\cdot A=x\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\cdot\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=x\)

\(\Leftrightarrow x-2\sqrt{x}+1=0\)

\(\Leftrightarrow x=1\left(loại\right)\)