K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 8 2021

Lời giải:

a. Xác suất chọn hsg là:

$\frac{40}{100}.\frac{70}{100}+\frac{20}{100}.\frac{30}{100}=\frac{17}{50}$

b.

Chọn ngẫu nhiên 3 hs, có $C^3_{100}$ cách chọn 

Số hsg là: $(\frac{40}{100}.\frac{70}{100}+\frac{20}{100}.\frac{30}{100}).100=34$ (hs)

Chọn ngẫu nhiên được 2 hsg có $C^2_{34}C^1_{100-34}=C^2_{34}.C^1_{66}$ cách chọn 

Xác suất cần tìm: $p=\frac{C^2_{34}.C^1_{66}}{C^3_{100}}=\frac{561}{2450}$

2 tháng 8 2019

1 tháng 7 2019

Đáp án A

Với mỗi câu hỏi, thí sinh có 4 phương án lựa chọn nên số phần tử của không gian mẫu là

n Ω = 4 10

Gọi X là biến cố “thí sinh đó đạt từ 8,0 điểm trở lên”

TH1. Thí sinh đó làm được 8 câu ( tức là 8,0 điểm):

Chọn 8 câu trong số 10 câu hỏi và 2 câu còn lại mỗi câu có 3 cách lựa chọn

đáp án sai nên có C 10 8 . 3 2 cách để thí sinh đúng 8 câu

TH2. Thí sinh đó làm được 9 câu (tức là 9,0 điểm)

Chọn 9 câu trong số 10 câu hỏi

và câu còn lại có 3 cách lựa chọn đáp án sai

nên có  C 10 9 . 3 1  cách để thí sinh đúng 9 câu

TH3. Thí sinh đó làm được 10 câu (tức là 10,0 điểm)

Chỉ có 1 cách duy nhất.

Suy ra số kết quả thuận lợi cho biến cố X là

Vậy xác suất cần tìm là

P = n ( X ) n ( Ω ) = 436 4 10

3 tháng 3 2018

Đáp án A

Với mỗi câu hỏi, thí sinh có 4 phương án lựa chọn nên số phần tử của không gian mẫu là  

Gọi X là biến cố “thí sinh đó đạt từ 8,0 điểm trở lên”

TH1. Thí sinh đó làm được 8 câu (tức là 8,0 điểm): Chọn 8 câu trong số 10 câu hỏi và 2 câu còn lại mỗi câu có 3 cách chọn đáp án sai nên có cách để thí sinh đúng 8 câu.

TH2. Thí sinh đó làm được 9 câu (tức là 9,0 điểm): Chọn 9 câu trong số 10 câu hỏi và câu còn lại có 3 cách lựa chọn đáp án sai nên có cách để thí sinh đúng 9 câu.

TH3. Thí sinh đó làm được 10 câu (tức là 10,0 điểm): Chỉ có 1 cách duy nhất .

Suy ra số kết quả thuận lợi cho biến cố X là

 

 

Vậy xác suất cần tìm là

 

6 tháng 4 2016

Trong không gian mẫu \(\Omega\) là tập hợp gồm tất cả các cặp hai bộ 3 câu hỏi, mà ở vị trí thứ nhất của cặp là bộ 3 câu hỏi thí sinh A chọn và ở vị trí thứ hai của cặp là bộ 3 câu hỏi thí sinh B chọn

Vì A cũng như B đều có \(C_{10}^3\) cách chọn 3 câu hỏi tứ 10 câu hỏi thí sinh nên theo quy tắc nhân ta có \(n\left(\Omega\right)=\left(C_{10}^3\right)^2\)

Kí hiệu X là biến cố " bộ 3 câu hỏi A chọn và bộ 3 câu hỏi B chọn là giống nhau"

Vì mỗi cách chọn 3 câu hỏi của A, B chỉ có duy nhất cách chọn 3 câu hỏi giống như A nên \(n\left(\Omega_X\right)=C_{10}^3.1=C_{10}^3\)

Vì vậy \(P\left(X\right)=\frac{n\left(\Omega_X\right)}{n\left(\Omega\right)}=\frac{C^3_{10}}{\left(C^3_{10}\right)^2}=\frac{1}{C^3_{10}}=\frac{1}{120}\)

26 tháng 9 2017

Bạn cho mình hỏi tại sao lại là \(^{C_{10}^3}.1\)