K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 9 2021

Đường thẳng \(x-1=0\Leftrightarrow x=1\) (có nghĩa: hoành độ của mọi điểm trên đường thẳng denta đều bằng 1, còn tung độ tùy thích. Lấy tung độ y bằng 0, 1, 2, ... 1000 đều được).

Tương tự với điểm trên đường thẳng dạng \(y+3=0\) chẳng hạn thì chỉ cần \(y=-3\) còn thích lấy x bao nhiêu tùy thích)

28 tháng 4 2021

\(y=x^3-3x^2+2x+2\Rightarrow y'=3x^2-6x+2\)

Vi \(\Delta\perp d:y=x-3\Rightarrow y'=-1\Leftrightarrow3x^2-6x+2=-1\)

\(\Rightarrow x=1\Rightarrow y=1-3+2+2=2\)

\(\Rightarrow\Delta:y=-1\left(x-1\right)+2\)

AH
Akai Haruma
Giáo viên
22 tháng 9 2020

Lời giải:

Gọi $M(x,y)\in \Delta$ thì $M'(x', y')\in \Delta'$ thỏa mãn:

\(T_{\overrightarrow{u}}M'=M\)

\(\Leftrightarrow \overrightarrow{M'M}=\overrightarrow{u}\)

\(\Leftrightarrow (x-x', y-y')=(-4,1)\Leftrightarrow x=x'-4; y=y'+1\)

Thay vào PT $\Delta$:

$x'-4+1=2(y'+1)$

$\Leftrightarrow x'-2y'-5=0$

Đây chính là ptđt $\Delta'$

3 tháng 2 2016

Biểu thức trong căn phải luôn \(\ge\) 0. 

NV
4 tháng 8 2020

1/

Bạn chỉ cần tìm sin, cos trong \(\left[0;2\pi\right]\) là đủ (vì cả 2 hàm đều tuần hoàn với chu kì \(2\pi\))

Đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\) với \(a\in\left[0;2\pi\right]\)

\(\Rightarrow4sina.cosa\left(2cos^2a-1\right)=1\)

\(\Leftrightarrow2sin2a.cos2a=1\Leftrightarrow sin4a=1\)

\(\Rightarrow4a=\frac{\pi}{2}+k2\pi\Rightarrow a=\frac{\pi}{8}+\frac{k\pi}{2}\)

\(\Rightarrow0\le\frac{\pi}{8}+\frac{k\pi}{2}\le2\pi\Rightarrow a=\left\{\frac{\pi}{8};\frac{5\pi}{8};\frac{9\pi}{8};\frac{13\pi}{8};\frac{17\pi}{8}\right\}\)

\(\Rightarrow\left(x;y\right)=\left(sin\frac{\pi}{8};cos\frac{\pi}{8}\right);\left(sin\frac{5\pi}{8};cos\frac{5\pi}{8}\right)...\)

2.

\(sinx=\frac{1}{3}\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+l2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)\\x=\pi-arcsin\left(\frac{1}{3}\right)\end{matrix}\right.\)

(Vì \(0< \frac{1}{3}< 1\) nên \(0< arcsin\left(\frac{1}{3}\right)< \frac{\pi}{2}\) do đó nếu \(k>0\Rightarrow arcsin\left(\frac{1}{3}\right)+k2\pi>2\pi\) ; nếu \(k\le-1\Rightarrow arcsin\left(\frac{1}{3}\right)+k2\pi\le-\frac{3\pi}{2}\) đều ko thuộc \(\left[0;\pi\right]\Rightarrow k=0\).

Tương tự với \(l\))

5 tháng 8 2020

Cho mình hỏi sao từ 0 < 1/3 < 1 thì suy ra đc 0 < arcsin (1/3) < pi/2 vậy?