K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2022

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

giúp mình nhé 1 anh NAM dự địng sau 8 năm ( kể từ lúc gửi tiết kiệm lần đầu )sẽ có đủ 2 tỉ đồng để mua nhà .mỗi năm anh gữi tiết kiệm bao nhiêu tiền ( số tiền mỗi năm gửi như nhau ở thời điễm cách lần gửi trước 1 năm ).biết lãi suất là 8 phần trăm / năm,lải hàng năm được nhập vào vốn và sau kì gửi cuối cùng anh đợi đúng 1 năm để có đủ 2 tỉ đồng . 2.xét tập hợp A gồm tất cả...
Đọc tiếp

giúp mình nhé

1 anh NAM dự địng sau 8 năm ( kể từ lúc gửi tiết kiệm lần đầu )sẽ có đủ 2 tỉ đồng để mua nhà .mỗi năm anh gữi tiết kiệm bao nhiêu tiền ( số tiền mỗi năm gửi như nhau ở thời điễm cách lần gửi trước 1 năm ).biết lãi suất là 8 phần trăm / năm,lải hàng năm được nhập vào vốn và sau kì gửi cuối cùng anh đợi đúng 1 năm để có đủ 2 tỉ đồng .

2.xét tập hợp A gồm tất cả các số tự nhiên có 5 chử số khác nhau .chọn ngẩu nhiên 1 số từ A tính xác suất để số được chọn có chữ số đứng sau nhõ hơn chử số đứng trước ( tính từ trái sang phải ).

3. cho hình lập phương abcda1b1c1d1 cạnh bằng a .Gọi K là trung điễm DD'.tính khoảng cách (CK,A'D).

4.chóp SABCD đáy là hình chữ nhật ,một mặt phẳng thay đổi nhưng luôn song song với đáy và cắt các cạnh bên SA,SB,SC,SD lần lượt tại M,N,P,Q.gọi M1N1P1Q1 lần lượt là hình chiếu vuÔng góc của MNPQ lên(ABCD).Tính tỉ số SM/SA để V mnpqm1n1p1q1 đạt giá trị lớn nhất.

0
6 tháng 4 2019

NV
29 tháng 3 2021

\(y'=\dfrac{-3}{\left(x-2\right)^2}\)

d. Phương trình hoành độ giao điểm

\(\dfrac{x+1}{x-2}=x-\dfrac{1}{2}\Leftrightarrow2x^2-7x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{2}\end{matrix}\right.\)

Tại \(x=0\Rightarrow\left\{{}\begin{matrix}y'=-\dfrac{3}{4}\\y=-\dfrac{1}{2}\end{matrix}\right.\) 

Pttt: \(y=-\dfrac{3}{4}x-\dfrac{1}{2}\)

Tại \(x=\dfrac{7}{2}\Rightarrow\left\{{}\begin{matrix}y'=-\dfrac{4}{3}\\y=3\end{matrix}\right.\) tiếp tuyến: \(y=-\dfrac{4}{3}\left(x-\dfrac{7}{2}\right)+3\)

e.

Tam giác ABC là tam giác nào nhỉ? Có lẽ đó là tam giác OAB?

NV
29 tháng 3 2021

g.

Giao điểm (C) với Ox có tọa độ \(\left(-1;0\right)\)

\(\Rightarrow y'\left(-1\right)=-\dfrac{1}{3}\)

Phương trình tiếp tuyến:

\(y=-\dfrac{1}{3}\left(x+1\right)\)

h.

Giao điểm (C) với Oy có tọa độ \(\left(0;-\dfrac{1}{2}\right)\)

Chính là trường hợp đầu của câu d, phương trình: \(y=-\dfrac{3}{4}x-\dfrac{1}{2}\)

6 tháng 5 2016

Do tứ diện OABC có OA, OB, OC đôi một vuông góc nên H là trực tâm của tam giác ABC khi và chỉ khi H là hình chiếu của O trên mặt phẳng (P).

Vậy mặt phẳng (P) đi qua H(1;2;1) và nhận vecto \(\overrightarrow{OH}=\left(1;2;1\right)\) làm vecto pháp tuyến suy ra (P) có phương trình :

\(1.\left(x-1\right)+2\left(y-2\right)+1\left(z-1\right)=0\)

hay \(x+2y+z-6=0\)

31 tháng 3 2017

Chọn A

Cách 1. Giả sử A (a; 0; 0) ∈ Ox, B (0;b;0) ∈ Oy, C (0;0;c) ∈ Oz.

Khi đó mặt phẳng (P) có dạng: 

Do H là trực tâm tam giác ABC nên:

Vậy phương trình của mặt phẳng (P) là: 

Cách 2. Vì tứ diện OABC có các cạnh đôi một vuông tại O và H là trực tâm tam giác ABC nên  (tham khảo bài tập 4, trang 105 SGK HH11).

Suy ra  Khi đó phương trình mặt phẳng (P) có dạng: 2x + y + x + D = 0

∈ (P) nên: 2.2 + 1 + 1 + D = 0 => D = -6

Vậy phương trình mặt phẳng  là: 2x + y + z - 6 = 0

AH
Akai Haruma
Giáo viên
12 tháng 7 2017

Ta có \(y'=-3<0\) nên hàm số luôn nghịch biến với mọi $x$ thuộc tập xác định.

Do đó kết hợp với \(x<2\) nên \(y>y(2)=-4\)

Dấu bằng không xảy ra cho nên hàm không có min.

AH
Akai Haruma
Giáo viên
31 tháng 12 2016

Đề số 7

a) Xét tam giác vuông $MBO$ vuông tại $B$ có đường cao $BH$:

\(\frac{1}{BH^2}=\frac{1}{MB^2}+\frac{1}{BO^2}=\frac{1}{BO^2-HO^2}\)\(\Rightarrow \frac{1}{MB^2}=\frac{1}{27}-\frac{1}{36}=\frac{1}{108}\Rightarrow MB=6\sqrt{3} (\text{cm})\)

b) Thấy rằng $BC$ là trung trực của $AO$ và $AO$ cũng là trung trực của $BC$ nên $BA=BO=OC=AC$

Mặt khác \(\cos(\widehat{BOH})=\frac{1}{2}\) nên \(\cos (\widehat{BOC})\neq 90^0\)

Do đó $OBAC$ là hình thoi

c) Vì $OA$ là trung trực của $BC$ nên với điểm $M\in OA$ thì $MB=MC$ suy ra \(\triangle MBO=\triangle MCO\Rightarrow \widehat {MBO}=\widehat{MCO}=90^0\Rightarrow MC\perp CO\)

Do đó $MC$ là tiếp tuyến của $(O)$