K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AB/BD=AC/CE

nên BC//DE

b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có

BD=CE

góc DBM=góc ECN

=>ΔDBM=ΔECN

=>DM=EN và BM=CN

c: Xét ΔABM và ΔACN có

AB=AC

góc ABM=góc ACN

BM=CN

=>ΔABM=ΔACN

=>AM=AN

=>ΔAMN cân tại A

 

a: Xét ΔADE có

AB/BD=AC/CE
nên BC//DE

b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có

DB=EC

\(\widehat{DBM}=\widehat{ECN}\)

Do đó: ΔDBM=ΔECN

Suy ra: DM=EN

c: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

DO đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

24 tháng 2 2022

Giải hộ mik ý c nha, mik đg cần gấp

 

 

a: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có

BD=CE

\(\widehat{MBD}=\widehat{NCE}\)

Do đó:ΔMBD=ΔNCE

Suy ra: DM=EN

b: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN

\(\widehat{HMB}=\widehat{KNC}\)

Do đó: ΔHBM=ΔKCN

Suy ra: \(\widehat{HBM}=\widehat{KCN}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

=>IB=IC

hay I nằm trên đường trung trực của BC(1)

Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AI là đường trung trực của BC

=>AI⊥BC

=>AI⊥MN

https://h.vn/hoi-dap/question/168197.html

tham khảo nhé bạn

a) Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(1)

Ta có: AD=AB+BD(B nằm giữa A và D)

AE=AC+CE(C nằm giữa A và E)

mà AB=AC(ΔABC cân tại A)

và BD=CE(gt)

nên AD=AE

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔADE cân tại A(cmt)

nên \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{ADE}\)

mà \(\widehat{ABC}\) và \(\widehat{ADE}\) là hai góc ở vị trí đồng vị

nên BC//DE(Dấu hiệu nhận biết hai đường thẳng song song)

b) Ta có: \(\widehat{DBM}=\widehat{ABC}\)(hai góc đối đỉnh)

\(\widehat{ECN}=\widehat{ACB}\)(hai góc đối đỉnh)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{DBM}=\widehat{ECN}\)

Xét ΔDBM vuông tại M và ΔECN vuông tại N có

BD=CE(gt)

\(\widehat{DBM}=\widehat{ECN}\)(cmt)

Do đó: ΔDBM=ΔECN(cạnh huyền-góc nhọn)

nên DM=EN(hai cạnh tương ứng)

c) Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

BM=CN(ΔDBM=ΔECN)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

AB=AC(ΔABC cân tại A)

Do đó: ΔABM=ΔACN(c-g-c)

nên AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

https://h.vn/hoi-dap/question/168197.html

tham khảo nhé bạn