K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

Theo BĐT tam giác ta có:

\(b+c>a\Rightarrow a+b+c>2a\Rightarrow2>2a\Rightarrow a< 1\)

Tương tự cũng có: \(b<1;c<1\)

Áp dụng BĐT AM-GM ta có:

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\left(\dfrac{1-a+1-b+1-c}{3}\right)^3=\left(\dfrac{3-\left(a+b+c\right)}{3}\right)^3=\dfrac{1}{27}\)

\(\Rightarrow0< \left(1-a\right)\left(1-b\right)\left(1-c\right)\le\dfrac{1}{27}\)

\(\Rightarrow0< ab+bc+ca-abc-\left(a+b+c\right)+1\le\dfrac{1}{27}\)

\(\Rightarrow0< ab+bc+ca-abc-1\le\dfrac{1}{27}\)

\(\Rightarrow1< ab+bc+ca-abc\le\dfrac{28}{27}\)

\(\Rightarrow2< 2ab+2bc+2ca+a^2+b^2+c^2-\left(a^2+b^2+c^2+2abc\right)\le\dfrac{56}{27}\)

\(\Rightarrow2< \left(a+b+c\right)^2-\left(a^2+b^2+c^2+2abc\right)\le\dfrac{56}{27}\)

\(\Rightarrow2< 4-\left(a^2+b^2+c^2+2abc\right)\le\dfrac{56}{27}\)

\(\Rightarrow\dfrac{52}{27}\le a^2+b^2+c^2+2abc< 2\) *Đúng*

18 tháng 12 2017

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNHChương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

bx gửi đc hết đề luôn -.- mà tại bị lỗi gì đấy rồi TT.TT má :v buồn ghê luôn >v< tại ảnh lấy bên messenger còn phải save rôi edit tùm lum nữa nên chỉ gửi đc đề toán thoi =="

NV
27 tháng 2 2021

\(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)

\(=\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\)

\(=\dfrac{a^2+b^2+c^2}{2abc}\) (đpcm)

2 tháng 3 2021

a2 = b2 + c2 - 2bc.cosA

b2 = a2 + c2 - 2ac.cosB

c2 = a2 + b2 - 2ab.cosC

⇒ a2 + b2 + c2 = 2bc.cosA + 2ac.cosB + 2ab.cosC

⇒ VT =  \(\dfrac{2bc.cosA}{2abc}+\dfrac{2ab.cosC}{2abc}+\dfrac{2ac.cosB}{2abc}\)

⇒ VT = \(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)

15 tháng 1 2021

Bất đẳng thức cần cm tương đương:

\(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le\dfrac{\left(a+b+c\right)^3}{27}\).

Mặt khác theo bđt AM - GM (Chú ý a, b, c là độ dài 3 cạnh của tam giác nên a + b - c > 0; b + c - a > 0; c + a - b > 0) ta có:

\(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le\dfrac{\left(a+b-c+b+c-a+c+a-b\right)^3}{27}=\dfrac{\left(a+b+c\right)^3}{27}\).

Vậy ta có đpcm.

15 tháng 1 2021

mk ko hiểu. bạn gthik rõ ra đc koSigma CTV

 

NV
21 tháng 2 2021

\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\left(2x+1\right)^2+\left(x^2-1\right)^2-\left(x^2+x+1\right)^2}{2\left(2x+1\right)\left(x^2-1\right)}\)

\(=\dfrac{-2x^3-x^2+2x+1}{2\left(2x+1\right)\left(x^2-1\right)}=\dfrac{-\left(2x+1\right)\left(x^2-1\right)}{2\left(2x+1\right)\left(x^2-1\right)}=-\dfrac{1}{2}\)

\(\Rightarrow A=120^0\)

10 tháng 5 2021

Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)

\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)

Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)

\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)