Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ đường cao AH. Đặt BH = x, CH = y thì do H nằm giữa B và C (hai góc ∠ B, ∠ C là góc nhọn) suy ra x + y = 4 (xem h.bs.18).
Ta có BH = AH = HC.tg 30 ° nên x – y.tg 30 ° = y/ 3
AC = 2AH ≈ 1,46. 2 = 2,92 (cm).
Vẽ đường cao AH . Đặt BH = x, CH = y thì do H nằm giữa B và C ( hai góc \(\widehat{B } ; \widehat{C}\) là góc nhọn) suy ra x + y = 4
Ta có \(BH=AH=HC.tg30^o\)nên \(x-y.tg30^o=y\sqrt{3}\)
\(\Rightarrow x=\frac{4}{1+\sqrt{3}}\approx1,46\left(cm\right)\)
Vậy \(AB=\frac{AH}{\sin45^o}=\frac{2AH}{\sqrt{2}}\approx2,06\left(cm\right)\)
\(AC=2AH\approx1,46.2=2,92\left(cm\right)\)
AC = 2AH ≈ 1,46. 2 = 2,92 ( cm )
Kẻ đường cao AH ứng với BC, đặt \(CH=x\Rightarrow BH=4-x\)
Trong tam giác vuông ABH
\(tanB=\dfrac{AH}{BH}\Rightarrow AH=BH.tanB=\left(4-x\right).tan70^0\)
Trong tam giác vuông ACH:
\(tanC=\dfrac{AH}{CH}\Rightarrow AH=CH.tanC=x.tan45^0=x\)
\(\Rightarrow\left(4-x\right)tan70^0=x\)
\(\Leftrightarrow\left(1+tan70^0\right)x=4.tan70^0\)
\(\Leftrightarrow x=\dfrac{4tan70^0}{1+tan70^0}\approx2,2\left(cm\right)\)
\(\Rightarrow CH=AH=2,2\left(cm\right)\)
\(AC=\sqrt{CH^2+AH^2}=AH\sqrt{2}\approx3,1\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.2,2.4=4,4\left(cm^2\right)\)
Bài 2:
\(\cos60^0=\dfrac{28^2+35^2-BC^2}{2\cdot28\cdot35}\)
\(\Leftrightarrow2009-BC^2=980\)
hay \(BC=7\sqrt{21}\left(cm\right)\)
Câu 1:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+6\right)=16\)
=>BH=2(cm)
BC=BH+CH=8cm
\(AC=\sqrt{8^2-4^2}=4\sqrt{3}\left(cm\right)\)
sin B=AC/BC=căn 3/2
nên góc B=60 độ
=>góc C=30 độ