K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

A) Xét tam giác CKA và tam giác AHB có : 

       \(\widehat{BHA=}\widehat{CKA}=90\)0

   \(AB=AC\)( vì tam giác ABC cân tại A)

  vậy tam giác AKA = tam giác AHB ( cạnh huyền góc vuông)

 suy ra : BH=AK

  

11 tháng 8 2015

mk can gap,sáng mai mk di học rùi

 

18 tháng 11 2017

bạn vẽ hình hộ mình đc ko mình vẽ ko ra đc CK vuông góc với AE mà K lại thuộc đoạn AE

11 tháng 3 2021

a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
góc H = góc C (= 90°)
AB = AC (T.g ABC vuông cân)
góc ABH = góc CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>góc HBM = góc MCK (So Le Ttrong)(1)
Mặt khác góc MAE + góc AEM = 90°(2)
Và góc MCK + góc CEK = 90°(3)
Và  góc AEM = góc CEK (4)
Từ 2,3,4 => góc MAE = góc ECK (5)
Từ 1,5 => góc HBM = góc MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét tam giác MBH và tam giác MAK có:
MB = AM (cmt)

góc HBM = góc MAK(cmt) 

BH = AK (cmt)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên tam giác AMH = tam giác  CMK (c.c.c)
=> góc AMH = góc CMK; mà góc AMH + góc HMC = 90 độ
=> góc CMK + góc HMC = 90° hay góc HMK = 90°
Tam giác HMK có MK = MH và góc HMK = 90° nên vuông cân tại M (đpcm).

a, BH = AK:

Ta có: ΔABC vuông cân tại A.

=> A1ˆ=A2ˆ=90oA1^=A2^=90o (1)

Cũng có: BH ⊥ AE.

=> ΔBAH vuông tại H.

=> B1ˆ+A2ˆ=90oB1^+A2^=90o (2)

Từ (1) và (2) => A1ˆ=B1ˆA1^=B1^.

Xét ΔBAH và ΔACK có:

+ AB = AC (ΔABC cân)

+ H1ˆ=K1ˆ=90oH1^=K1^=90o (CK ⊥ AE, BH ⊥ AE)

+ A1ˆ=B1ˆ=(cmt)A1^=B1^=(cmt)

=> ΔBAH = ΔACK (cạnh huyền - góc nhọn)

=> BH = AK (2 cạnh tương ứng)

b, ΔMBH = ΔMAK:

Ta có: BH ⊥ AK; CK ⊥ AE.

=> BH // CK.

=> HBMˆ=MCKˆHBM^=MCK^ (2 góc so le trong) [1]

Mà MAEˆ+AEMˆ=90oMAE^+AEM^=90o [2]

Và MCKˆ+CEKˆ=90oMCK^+CEK^=90o [3]

AEMˆ=CEKˆAEM^=CEK^ (đối đỉnh) [4]

Từ [1], [2], [3] và [4] => MAEˆ=ECKˆMAE^=ECK^ [5]

Từ [1] và [5] => HBMˆ=MAKˆHBM^=MAK^.

Ta có: AM là trung tuyến của tam giác vuông ABC nên AM = BM = MC = 1212BC.

Xét ΔMBH và ΔMAK có:

+ MA = MB (cmt)

+ HBMˆ=MAKˆHBM^=MAK^ (cmt)

+ BH = AK (câu a)

=> ΔMBH = ΔMAK (c - g - c)

c, ΔMHK vuông cân:

Xét ΔAMH và ΔCMK có:

+ AH = CK (ΔABH = ΔCAK)

+ MH = MK (ΔMBH = ΔMAK)

+ AM = CM (AM là trung tuyến)

=> ΔAMH = ΔCMK (c - c - c)

=> AMHˆ=CMKˆAMH^=CMK^ (2 góc tương ứng)

mà AMHˆ+HMCˆ=90oAMH^+HMC^=90o

=> CMKˆ+HMCˆ=90oCMK^+HMC^=90o

hay HMKˆ=90oHMK^=90o.

ΔHMK có MK = MH và MHKˆ=90oMHK^=90o.

=> ΔHMK vuông cân tại M.

 chúc bạn học tốt

 

4 tháng 4 2020

a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
^H = ^C (= 90°)
AB = AC (T.g ABC vuông cân)
^ABH = ^CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>^HBM = ^MCK (SLT)(1)
Mặt khác ^MAE + ^AEM = 90°(2)
Và ^MCK + ^CEK = 90°(3)
Nhưng ^AEM = ^CEK (đ đ)(4)
Từ 2,3,4 => ^MAE = ^ECK (5)
Từ 1,5 => ^HBM = ^MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét ▲MBH và ▲MAK có:
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c)
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ
=> ^CMK + ^HMC = 90° hay ^HMK = 90°
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân tại M (đpcm).

Chúc bạn học tốt!

4 tháng 4 2020

Bạn tham khảo tại link này nhé

https://h.vn/hoi-dap/question/192990.html

Câu hỏi của Lê Thị Thùy Dung - Toán lớp 7 | Học trực tuyến

23 tháng 2 2018

bài này cũng khó phết đấy

19 tháng 6 2019

bài này mk nghĩ mấy tiếng còn không ra phải lên mạng mà xem