K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Gọi AM cắt DE tại I 

Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)

\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)

Do \(\Delta AID\)vuông tại I suy ra 

\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)

\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)

\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)

Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra 

\(\widehat{MFC}=\widehat{ACF}\)

Mà 

5 tháng 2 2020

\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF

Mà MB=MC suy ra \(\Delta BFC\) có  FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\)  \(\Delta BFC\)vuông tại F hay  \(BF\perp CF\left(đpcm\right)\)

21 tháng 10 2023

ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

Xét ΔABD vuông tại A có AK là đường cao

nên \(BK\cdot BD=BA^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BD\)

=>\(\dfrac{BH}{BD}=\dfrac{BK}{BC}\)

Xét ΔBHK và ΔBDC có

\(\dfrac{BH}{BD}=\dfrac{BK}{BC}\)

\(\widehat{HBK}\) chung

Do đó: ΔBHK đồng dạng với ΔBDC

28 tháng 2 2023

hình k co à

a: Xét tứ giác CDHF có

góc CDF=góc CHF=90 độ

=>CDHF là tứ giác nội tiếp

b: Xét ΔBCA vuông tại C và ΔCDE vuông tại D có

góc CBA=góc DCE

=>ΔBCA đồng dạng với ΔCDE

=>DE/CA=CE/AB

=>DE*AB=CE*CA

BD là phân giác

=>DA/DC=BA/BC

mà CE/CD=BA/BC

nên DA=CE

=>DE*AB=AC*DA

a) Xét ΔAMK vuông tại A và ΔCMH vuông tại C có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMK}=\widehat{CMH}\)(hai góc đối đỉnh)

Do đó: ΔAMK=ΔCMH(cạnh góc vuông-góc nhọn kề)

Suy ra: AK=CH(hai cạnh tương ứng)

Xét tứ giác AKCH có 

AK//CH(\(\perp AC\))

AK=CH(cmt)

Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

21 tháng 2 2021

a/ + Áp dụng hệ thức giữa cạnh và hình chiếu trong ΔΔABC vuông tại A có: AB2 = BC . BH => BH = AB2 : BC Hay BH = 92 : 15 => BH = 5,4 cm + Xét ΔΔABC vuông tại A có : HC = BC - BH Hay HC = 15 - 5,4 = 9,6 => HC = 9,6 cm + Áp dụng hệ thức liên quan đến đường cao trong ΔΔABC vuông tại A có : AH2 = BH . HC Hay AH2 = 5,4 . 9,6 AH2 = 51,84 => AH = √51,8451,84 = 7,2 cm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH\cdot15=9\cdot12=108\)

hay AH=7,2(cm)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=12^2-7.2^2=92.16\)

hay CH=9,6(cm)

Vậy: AH=7,2cm; CH=9,6cm