K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
18 tháng 8 2021

undefined

ta có : \(\Delta BDH~\Delta BAC\Rightarrow\frac{BD}{DH}=\frac{BA}{AC}\)

ta có : \(\Delta DHA~\Delta ABC\Rightarrow\frac{HD}{DA}=\frac{AB}{AC}\) và \(\Delta CHE~\Delta CAB\Rightarrow\frac{CH}{HE}=\frac{AB}{AC}\)

nhâm ba đẳng thức lại ta có :

\(\frac{BD}{DH}.\frac{DH}{DA}.\frac{HE}{CE}=\left(\frac{AB}{AC}\right)^3\) mà DA=HE ( do DAEH là hình chữ nhậy)

nên \(\frac{BD}{CE}=\left(\frac{AB}{AC}\right)^3\)

Trả lời:

a, ta có AB^2+AC^2=5^2+12^2=25+144=169
BC^2=13^2=169
=>AB^2+AC^2=BC^2
=>tam giác ABC vuông tại A( định lí pytago đảo)
b, ta có AH ⊥BC
=> tam giác AHB và tam giác AHC vuông tại H
+tam giác AHC có HF là đường cao
=> AH^2=AF.AC(1)
+tam giác AHB có HE là đường cao
=> AH^2=AE.AB(2)
từ(1) và (2)=> AF.AC=AE.AB(=AH^2)
c, ta có AH là đường cao của tam giác ABC
=>AH ⊥BC(*)
+{ HE  ⊥AB=> góc HEA=90*
+{HF ⊥AC=>góc HFA=90*
+{AB ⊥AC=> góc BAC=90*
=> tứ giác AEHF là hình chữ nhật 
lại có AH và EF là đường chéo
=> AH ⊥EF(**)
từ (*)(**) => EF//BC
=> góc AEF=góc ABC(đồng vị)
ΔABC  ∞    ΔAEF(g.g) vì 
góc A chung
góc ABC=góc AEF(cmt)
=>đpcm

Đúng thì k sai thì cho mik xin lỗi

HT

a, ta có AB^2+AC^2=5^2+12^2=25+144=169

BC^2=13^2=169

=>AB^2+AC^2=BC^2

=>tam giác ABC vuông tại A( định lí pytago đảo)

b, ta có AH ⊥BC

=> tam giác AHB và tam giác AHC vuông tại H

+tam giác AHC có HF là đường cao

=> AH^2=AF.AC(1)

+tam giác AHB có HE là đường cao

=> AH^2=AE.AB(2)

từ(1) và (2)=> AF.AC=AE.AB(=AH^2)

c, ta có AH là đường cao của tam giác ABC

=>AH ⊥BC(*)

+{ HE  ⊥AB=> góc HEA=90*

+{HF ⊥AC=>góc HFA=90*

+{AB ⊥AC=> góc BAC=90*

=> tứ giác AEHF là hình chữ nhật 

lại có AH và EF là đường chéo

=> AH ⊥EF(**)

từ (*)(**) => EF//BC

=> góc AEF=góc ABC(đồng vị)

ΔABC  ∞    ΔAEF(g.g) vì 

góc A chung

góc ABC=góc AEF(cmt)

=>đpcm

23 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\BH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)

b: ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

Do đó: ΔAEF đồng dạng với ΔACB

c: Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{AD}=\dfrac{CB}{CD}=\dfrac{AB+BC}{AD+CD}=\dfrac{AB+BC}{AC}\)(1)

ΔBAD vuông tại A có

\(cotABD=\dfrac{AB}{AD}\)(2)

BD là phân giác của góc ABC

=>\(\widehat{ABD}=\widehat{DBC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(cotDBC=\dfrac{AB+BC}{AC}\)

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

=>AH=DE

BD*CE*BC

=BH^2/BA*CH^2/CA*BC

=AH^4/AH=AH^3

=DE^3

22 tháng 8 2023

Bạn tự vẽ hình.

(a) \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

+) \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\Rightarrow\hat{B}\approx53^o\)

+) \(\hat{C}=90^o-\hat{B}\approx90^o-53^o=37^o\)

(b) +) \(AB.AC=BC.AH\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)

\(\hat{A}=\hat{E}=\hat{F}=90^o\left(gt\right)\Rightarrow AEHF\) là hình chữ nhật.

Do đó, \(EF=AH\left(đpcm\right)\)

22 tháng 8 2023

ok bn