Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
Bài 2:
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{1}{9}\)
Lời giải:
a) Theo giả thiết đề bài, giả sử đường cao $AH$ chia cạnh huyền theo tỷ lệ $HB:HC=9:4$
Xét tam giác $BHA$ và $BAC$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)
$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}$
$\Rightarrow BA^2=BH.BC$
Tương tự: $CA^2=CH.CB$
$\Rightarrow (\frac{BA}{CA})^2=\frac{BH}{CH}=\frac{9}{4}$
$\Rightarrow \frac{BA}{CA}=\frac{3}{2}$
$\Leftrightarrow \frac{BD}{CD}=\frac{3}{2}$
Vậy đường phân giác $AD$ chia cạnh huyền theo tỷ lệ $3:2$
b)
Đặt $AB=3a; AC=2a$ (ĐK: $a>0$)
Theo công thức hệ thức lượng trong tam giác vuông ta có:
$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$
$\Leftrightarrow \frac{1}{36}=\frac{1}{(3a)^2}+\frac{1}{(2a)^2}$
$\Rightarrow a=\sqrt{13}$ (cm)
$\Rightarrow AB=3\sqrt{13}; AC=2\sqrt{13}$ (cm)
a) Do AD là tia phân giác \(\widehat{BAC}\)
\(\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}=\frac{36}{60}=\frac{3}{5}\)
Áp dụng hệ thức lượng trong tam giác ta có :
+) \(AB^2=BC.BH\Leftrightarrow BH=\frac{AB^2}{BC}\)
+) \(AC^2=BC.HC\Leftrightarrow CH=\frac{AC^2}{BC}\)
Ta có : \(\frac{HB}{HC}=\frac{AB^2}{BC}\div\frac{AC^2}{BC}=\frac{AB^2}{BC}.\frac{BC}{AC^2}=\frac{AB^2}{AC^2}=\frac{3^2}{5^2}=\frac{9}{25}\)
Vậy \(\frac{HB}{HC}=\frac{9}{25}\)
b) Xét \(\Delta AHB\)và \(\Delta CHA\)có :
\(\widehat{BHA}=\widehat{CHA}\left(=90^o\right)\)
\(\widehat{ABH}=\widehat{CAH}\)( cùng phụ với \(\widehat{ACB}\))
\(\Rightarrow\)\(\Delta AHB\)đồng dạng với \(\Delta CHA\)( g-g )
\(\Rightarrow\frac{AH}{CH}=\frac{HB}{HA}\Leftrightarrow AH^2=HB.HC\left(1\right)\)
Lại có \(\frac{HB}{HC}=\frac{9}{25}\Leftrightarrow\frac{HB}{9}=\frac{HC}{25}\)
Mà \(HB=HC=BC=96\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{HB}{9}=\frac{HC}{25}=\frac{HB+HC}{9+25}=\frac{96}{34}=\frac{48}{17}\)
\(\Rightarrow\hept{\begin{cases}HB=\frac{48}{17}\times9=\frac{432}{17}\\HC=\frac{48}{17}\times25=\frac{1200}{17}\end{cases}}\)
Thay vào (1) ta có : \(AH^2=\frac{432}{17}\times\frac{1200}{17}=\frac{518400}{289}\)
\(\Rightarrow AH=\sqrt{\frac{518400}{289}}=\frac{720}{17}\)
Vậy ...
Dễ ẹt;
Giả sử \(\Delta\)ABC vuông tại A có phân giác AD sao cho DC=3BD;đương cao AH
Từ B kẻ đường thẳng song song với AC cắt AD tại I => BI vuông góc AB
Vì AD là p/g góc A => góc BAD=45 nên tam giác BAI vuông cân tại B nên BA=BI
Vì BI // AC nên \(\left(\frac{BI}{AC}\right)=\left(\frac{BD}{DC}\right)=\left(\frac{BD}{3BD}\right)=\frac{1}{3}\) (định lí Ta lét)
mà BI=AB nên \(\frac{AB}{AC}=\frac{1}{3}\)
Cm \(\Delta\)AHC đồng dạng \(\Delta\)BHA(g.g) nên \(\frac{BH}{HA}=\frac{HA}{HC}=\frac{AB}{AC}=\frac{1}{3}\)
nên \(BH=\frac{1}{3}AH\);\(HC=3AH\)nên \(\frac{BH}{HC}=\frac{1}{9}\)
Giả sử
Δ
ΔABC vuông tại A có phân giác AD sao cho DC=3BD;đương cao AH
Từ B kẻ đường thẳng song song với AC cắt AD tại I => BI vuông góc AB
Vì AD là p/g góc A => góc BAD=45 nên tam giác BAI vuông cân tại B nên BA=BI
Vì BI // AC nên
(
B
I
A
C
)
=
(
B
D
D
C
)
=
(
B
D
3
B
D
)
=
1
3
(
AC
BI
)=(
DC
BD
)=(
3BD
BD
)=
3
1
(định lí Ta lét)
mà BI=AB nên
A
B
A
C
=
1
3
AC
AB
=
3
1
Cm
Δ
ΔAHC đồng dạng
Δ
ΔBHA(g.g) nên
B
H
H
A
=
H
A
H
C
=
A
B
A
C
=
1
3
HA
BH
=
HC
HA
=
AC
AB
=
3
1
nên
B
H
=
1
3
A
H
BH=
3
1
AH;
H
C
=
3
A
H
HC=3AHnên
B
H
H
C
=
1
9
HC
BH
=
9
1
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)