K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABH vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

2: Ta có: \(AE\cdot AB=AF\cdot AC\)

nên AE/AC=AF/AB

Xet ΔAEF vuông tại A và ΔACB vuông tại A có 

AE/AC=AF/AB

Do đó: ΔAEF\(\sim\)ΔACB

3: \(AH=\sqrt{8\cdot18}=12\left(cm\right)\)

=>EF=12(cm)

23 tháng 6 2017

a, bc^2 = ab^2 +ac^2 

      <=.> (ae+eb)^2   +(af+fc)^2

     <=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC 

<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)

<=>EB^2 +CF^2 + AH ^2  + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF 

<=>EB^2 +CF^2+3 AH^2  (đpcm)

b, cb =2a là thế nào vậy

25 tháng 6 2017

đề bài cho vậy 

20 tháng 6 2021

a) Ta có: \(AB.sinC+AC.cosC=AB.\dfrac{AB}{BC}+AC.\dfrac{AC}{BC}=\dfrac{AB^2}{BC}+\dfrac{AC^2}{BC}\)

\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)

b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) nội tiếp

\(\Rightarrow EF=AH\Rightarrow EF.BC.AE=AH.BC.AE\)

\(=AB.AC.AE\left(AB.AC=AH.BC=2S_{ABC}\right)=AE.AB.AC\)

\(=AH^2.AC=AF.AC.AC=AF.AC^2\)

c) Ta có: \(AH.BC.BE.CF=AB.AC.BE.CF=BE.BA.CF.CA\)

\(=BH^2.CH^2=\left(BH.CH\right)^2=\left(AH^2\right)^2=AH^4\)

\(\Rightarrow AH^3=BC.BE.CF\)

Vì AEHF là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AE=HF\\AF=EH\end{matrix}\right.\)

Vì \(BE\parallel HF\) \(\Rightarrow\angle CHF=\angle CBA\)

Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)

\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{BE}{EH}=\dfrac{HF}{FC}\Rightarrow\dfrac{BE}{AF}=\dfrac{AE}{CF}\)

\(\Rightarrow BE.CF=AE.AF\Rightarrow BC.AE.AF=BC.BE.CF=AH^3\)

31 tháng 7 2021

a) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow AE.AB=AH^2\)

tam giác AHC vuông tại H có đường cao HF nên áp dụng hệ thức lượng

\(\Rightarrow AF.AC=AH^2=AE.AB\)

b) \(AE.AB=AF.AC\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AF}{AB}\\\angle BACchung\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right)\)

c) Ta có: \(AH^4=AH^2.AH^2=AE.AB.AF.AC\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH^4=AE.AF.BC.AH\Rightarrow AH^3=AE.AF.BC\)

 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

b) Ta có: \(AE\cdot AB=AF\cdot AC\)
nên \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAFE vuông tại A và ΔABC vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

Do đó: ΔAFE\(\sim\)ΔABC(c-g-c)

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE =...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm, 
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

3
9 tháng 5 2021

mình chịu thoiii

12 tháng 7

Gì nhiều vậy???

 

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot10=6^2=36\)

=>BH=36/10=3,6(cm)

XétΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

b: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(HE^2+HF^2=AH^2\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot BE=HE^2\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot FC=HF^2\)

\(AE\cdot BE+AF\cdot FC\)

\(=HE^2+HF^2\)

\(=AH^2\)

c: ΔABC vuông tại A

mà AI là đường trung tuyến

nên AI=BI=CI

IA=IC

=>ΔIAC cân tại I

=>\(\widehat{IAC}=\widehat{ICA}\)

=>\(\widehat{OAF}=\widehat{ACB}\)

AEHF là hình chữ nhật

=>\(\widehat{AFE}=\widehat{AHE}\)

mà \(\widehat{AHE}=\widehat{ABH}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AFE}=\widehat{ABH}\)

=>\(\widehat{AFO}=\widehat{ABC}\)

\(\widehat{AFO}+\widehat{FAO}=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AO\(\perp\)OF tại O

=>AI\(\perp\)FE tại O

Xét ΔAEF vuông tại A có AO là đường cao

nên \(\dfrac{1}{AO^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ