K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBAC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay AC=16(cm)

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}=\dfrac{16}{2}=8\left(cm\right)\)

Xét tứ giác AMNC có MN//AC

nên AMNC là hình thang

mà \(\widehat{A}=90^0\)

nên AMNC là hình thang vuông

22 tháng 12 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

SUy ra: MN//AC

hay AMNC là hình thang vuông

28 tháng 12 2021

 Cho ∆JVC vuông tại J. Gọi M, N lần lượt là trung điểm của JV, VC. 

a) Chứng minh: JMNC là hình thang vuông. b) Gọi I là trung điểm của JC. Chứng minh: JMNI là hình chữ nhật c) Tìm điều kiện của ∆JVC để tứ giác JMNI là hình vuônggiải giúp mình nhe
22 tháng 10 2021

a: Xét ΔABC có

N là trung điểm của AC
K là trung điểm của BC

Do đó: NK là đường trung bình của ΔABC

Suy ra: NK//AB

Xét tứ giác ANKB có KN//AB

nên ANKB là hình thang

mà \(\widehat{NAB}=90^0\)

nên ANKB là hình thang vuông

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=16(cm)

Xét ΔABC có

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)

2: Xét tứ giác AMNC có MN//AC

nên AMNC là hình thang

mà \(\widehat{A}=90^0\)

nên AMNC là hình thang vuông

30 tháng 9 2021

Dạ còn phần số 2 nữa ấy ạ :33

 

17 tháng 12 2022

a: Xét ΔBAC co BM/BA=BN/BC

nên MN//AC và MN=AC/2

=>AMNC là hình thang

mà góc MAC=90 độ

nen AMNC là hình thang vuông

b: Xét tứ giác ANBH có

M là trung điểm chung của AB và NH

NA=NB

nên ANBH là hình thoi

25 tháng 10 2021

a) Xét tam giác ABC có:

M,N là trung điểm BC,AB

=> MN là đường trung bình

=> MN//AC

=> ANMC là hthang

Mà \(\widehat{NAC}=90^0\)(Tam giác ABC vuông tại A)

=> ANMC là hthang vuông

b) Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét tam giác ABC có: 

AM là đường trung tuyến ứng với cạnh huyền

\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)

a: Xét ΔABC có 

M là trung điểm của BC

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//AB

Xét tứ giác ANMB có MN//AB

nên ANMB là hình thang

mà \(\widehat{NAB}=90^0\)

nên ANMB là hình thang vuông

b: Xét tứ giác AMCD có

N là trung điểm của AC
N là trung điểm của MD

Do đó; AMCD là hình bình hành

mà MA=MC

nên AMCD là hình thoi

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) \(N\), \(E\) lần lượt là trung điểm của \(AC\) và \(BC(gt)\); Suy ra \(NE\) là đường trung bình của tam giác \(ABC\).

Suy ra \(NE\) // \(AB\)

Suy ra tứ giác \(ANEB\) là hình thang.

Mà \(\widehat {NAB} = 90^\circ \) (do \(\Delta ABC\) vuông tại \(A\))

Do đó tứ giác \(ANEB\) là hình thang vuông.

b) \(M\), \(E\) lần lượt là trung điểm của \(AB\) và \(BC\) (gt);

Suy ra \(ME\) là đường trung bình của \(\Delta ABC\)

Suy ra \(ME\) // \(AC\) hay \(ME\) // \(AN\)

Mà  \(AM\) // \(NE\) (do \(AB\) // \(NE\))

Suy ra tứ giác \(AMEN\) là hình bình hành

Mà \(\widehat {{\rm{MAN}}} = 90^\circ \) nên \(AMEN\) là hình chữ nhật

c) Xét tứ giác \(BMFN\) có: \(MF\) // \(BN\) (gt) và \(BM\) // \(FN\) (do \(AB\) // \(NE\))

Suy ra \(BMFN\) là hình bình hành

Suy ra \(BM = FN\)

Mặt khác \(NE = AM\) (Tứ giác \(ANEM\) là hình chữ nhật) và \(AM = BM\)

Suy ra \(FN = NE\)

Tứ giác \(AFCE\) có \(N\) là trung điểm của \(AC\) và \(EF\)

Suy ra \(AFCE\) là hình bình hành

Mà \(AC \bot EF\)

Do đó \(AFCE\) là hình thoi

d) Xét tứ giác \(ADBE\) ta có: \(DE\) và \(AB\) cắt nhau tại \(M\) (gt)

Mà \(M\) là trung điểm của \(AB\) (gt)

\(M\) là trung điểm của \(DE\) (do \(D\) đối xứng với \(E\) qua \(M\))

Suy ra \(ADBE\) là hình bình hành

Suy ra \(AD\) // \(BE\) hay \(AD\) // \(EC\)

Mà \(AF\) // \(EC\)  (do \(AECF\) là hình thoi)

Suy ra \(A,D,F\) thẳng hàng (1)

Mà \(ADBE\) là hình bình hành

Suy ra \(BE\) // \(AD\)

Mà \(AF = EC\) (do \(AFCE\) là hình thoi); \(EB = EC\) (gt)

Suy ra \(AD = AF\)(2)

Từ (1) và (2) suy ra \(A\) là trung điểm của \(DF\)

a: Xét tứ giác AEMC có ME//AC

nên AEMC là hình thang

mà \(\widehat{CAE}=90^0\)

nên AEMC là hình thang vuông

b: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật