K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 2 2021

Do \(x^6-x^3+x^2-x+1=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\) nên BPT tương đương:

\(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\ge0\)

\(\Leftrightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\le\sqrt{26}\) (1)

Ta có:

\(VT=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\) (2)

\(\Rightarrow\left(1\right);\left(2\right)\Rightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}=\sqrt{26}\)

Dấu "=" xảy ra khi và chỉ khi \(2\left(2x-1\right)=3\left(2-2x\right)\Leftrightarrow x=\dfrac{4}{5}\)

Vậy BPT có nghiệm duy nhất \(x=\dfrac{4}{5}\)

f: Ta có: \(\left(x+1\right)\left(x-2\right)-\left(2-x\right)\left(3-x\right)>0\)

\(\Leftrightarrow x^2-2x+x-2-\left(x-2\right)\left(x-3\right)>0\)

\(\Leftrightarrow x^2-x-2-x^2+5x-6>0\)

\(\Leftrightarrow4x>8\)

hay x>2

g: Ta có: \(\left(2x-1\right)^2\le2\left(x-1\right)^2\)

\(\Leftrightarrow4x^2-4x+1-2x^2+4x-2\le0\)

\(\Leftrightarrow2x^2\le1\)

\(\Leftrightarrow x^2\le\dfrac{1}{2}\)

\(\Leftrightarrow-\dfrac{\sqrt{2}}{2}\le x\le\dfrac{\sqrt{2}}{2}\)

2 tháng 6 2020

Do \(x_1< x_2\). Do đó: \(x_1=\frac{2n-1-1}{2}=n-1\) và \(x_2=\frac{2n-1+1}{2}=n\)

Ta có \(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3\)

\(=n^2-2n+1-2n+3=n^2-4n+4=\left(n-2\right)^2\ge0\)

Dấu "=" xảy ra <=> n=2

2 tháng 6 2020

Vì x< x2.Do đó x1=\(\frac{2n-1-1}{2}=n-1\)và x2=\(\frac{2n-1+1}{2}=n\)

Ta có:\(x_{1_{ }}^{2^{ }^{ }}-2x_{2_{ }}+3=\left(n-1\right)^2-2n+3\)

\(=n^2-2n+1-2n+3=n^2-4n+4=\left(n-2\right)^2\ge0\)

11 tháng 6 2021

a, \(\frac{2\left(2-3x\right)}{5}< \frac{4-2x}{3}\Leftrightarrow\frac{4-6x}{5}-\frac{4-2x}{3}< 0\)

\(\Leftrightarrow\frac{12-18x-20+10x}{15}< 0\Leftrightarrow-8x-8< 0\Leftrightarrow x>-1\)vì 15 > 0 

-/-/-(----|------> 

    -1    0                           

Vậy tập ngiệm của bft là S = { x | x > -1 }

b, \(x\left(9x+1\right)+1\le\left(1-3x\right)^2\Leftrightarrow9x^2+x+1\le1-6x+9x^2\)

\(\Leftrightarrow7x\le0\Leftrightarrow x\le0\)

-------]--/-/-/-/-->

       0

Vậy tập nghiệm của bft là S = { x | x =< 0 } 

10 tháng 6 2021

\(\frac{2\cdot\left(2-3x\right)}{5}< \frac{4-2x}{3}\)   

\(\frac{4-6x}{5}< \frac{4-2x}{3}\)   

\(\left(4-6x\right)\cdot3< \left(4-2x\right)\cdot5\)   

\(12-18x< 20-10x\)   

\(10x-18x< 20-12\)   

\(-8x< 8\)   

\(x>-1\)   

\(x\cdot\left(9x+1\right)+1\le\left(1-3x\right)^2\)   

\(9x^2+x+1\le9x^2-6x+1\)   

\(x\le-6x\)   

\(x+6x\le0\)   

\(7x\le0\)   

\(x\le0\)

11 tháng 6 2020

Sửa đề: a + 2b + 3c = 1

Xét: \(4x^2-4\left(2a+1\right)x+4a^2+192abc+=0\)

có: \(\Delta_1'=4\left(2a+1\right)^2-4\left(4a^2+192abc+1\right)=16a-768abc=16a\left(1-48bc\right)\)

Xét \(4x^2-4\left(2b+1\right)x+4b^2+96abc+1=0\)

có: \(\Delta_1'=4\left(2b+1\right)^2-4\left(4b^2+96abc+1\right)=16b-384abc=16b\left(1-24ac\right)\)

Ta lại xét: \(\left(1-48bc\right)+\left(1-24ac\right)=2-24c\left(a+2b\right)\)

\(=2-24c\left(1-3c\right)=2\left(36c^2-12c+1\right)=2\left(6c-1\right)^2\ge0\)với mọi c 

=> Tồn tại ít nhất 1 trong 2 số: \(\left(1-48bc\right);\left(1-24ac\right)\) không âm 

Vì a và b không âm 

=> Tồn tại ít nhất 1 trong 2 số : \(16a\left(1-48bc\right);16b\left(1-24ac\right)\)không âm 

=> Tồn tại it nhất 1 trong 2 \(\Delta_1';\Delta_2'\)không âm 

=> Có ít nhất 1 trong 2 phương trình trên có nghiệm.