K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 7 2021

\(y'=-x^2-2\left(m-2\right)x+m-2\)

Hàm nghịch biến trên TXĐ khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\left(đúng\right)\\\Delta'=\left(m-2\right)^2+m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left(m-2\right)\left(m-1\right)\le0\)

\(\Leftrightarrow1\le m\le2\)

8 tháng 4 2018

Chọn B.

Tập xác định 

Có 

Hàm số nghịch bến trên mỗi khoảng của tập xác định

Chọn C

31 tháng 3 2018

Chọn D

4 tháng 3 2019

Đáp án B

19 tháng 11 2018

Chọn D.

Tập xác định: D =  ℝ

Ta có

Xét m = 1, ta có y' = -3 < 0 ∀ x ∈ ℝ  nên nghịch biến trên tập xác định.

Xét m ≠ 1 Để hàm số trên nghịch biến trên tập xác định khi và chỉ khi 

Vậy với  - 2 7 ≤ m ≤ 1 thì hàm số y =  ( m - 1 ) x 3 + ( m - 1 ) x 2 - ( 2 m + 1 ) + 5  nghịch biến trên tập xác định.

16 tháng 8 2019

Đáp án: D.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ ∆ ′ = 2m + 5  ≤  0

dấu “=” xảy ra nhiều nhất tại hai điểm, nên hàm số nghịch biến trên các khoảng (- ∞ ; 2)

và (2; + ∞ ) khi m  ≤  −5/2.

5 tháng 10 2017

Chọn D

y   =   log ( x 2 - 2 m x + 4 )

Điều kiện xác định của hàm số trên 

Để tập xác định của hàm số là thì 

Vậy đáp án đúng là đáp án D.

27 tháng 12 2017