Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đkxđ x≥0 , x ≠1
\(K=\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
= \(\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
= \(\dfrac{x-3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)b)
\(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2-1}{\sqrt{x}-2}=1-\dfrac{1}{\sqrt{x}-2}\)
để K ∈ z thì \(\dfrac{-1}{\sqrt{x}-2}\) nguyên
=> √x -2 ∈ Ư(-1)={-1;1}
=> x ∈ {1; 9}
vậy ...
a: \(=\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}\cdot\dfrac{x-1}{x-2\sqrt{x}}\)
\(=\dfrac{x-3\sqrt{x}}{x-2\sqrt{x}}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
b: Để K là số nguyên thì \(\sqrt{x}-2-1⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)
hay x=9
c: Để K là số âm thì \(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}< 0\)
=>4<x<9
Đặt \(x+\sqrt{3}=a;\frac{1}{x}-\sqrt{3}=b\left(a,b\in Z\right)\)
=> \(a-\sqrt{3}=\frac{1}{b+\sqrt{3}}=x\)
=> \(ab-3=\sqrt{3}\left(b-a\right)\)
Do \(a,b\in Z\)
=> \(\sqrt{3}\left(b-a\right)\in Z\)
=> \(a=b\)
=> \(ab=3\)=> \(a=b=\sqrt{3}\)(Loại)
Vậy không có giá trị nào của x t/m đề bài
Câu trả lời trên sai rồi, câu trả lời đúng đây:
Đặt \(\hept{\begin{cases}x+\sqrt{3}=a\\\frac{1}{x}-\sqrt{3}=b\end{cases}}\left(a,b\inℤ\right)\Rightarrow\hept{\begin{cases}x=a-\sqrt{3}\\\frac{1}{x}=b+\sqrt{3}\end{cases}\Rightarrow\hept{\begin{cases}x=a-\sqrt{3}\\x=\frac{1}{b+\sqrt{3}}\end{cases}\Rightarrow}a-\sqrt{3}=\frac{1}{b+\sqrt{3}}}\)
\(\Rightarrow\left(a-\sqrt{3}\right)\left(b+\sqrt{3}\right)=1\Rightarrow4-ab=\sqrt{3}\left(a-b\right)\)
TH1: \(a-b\ne0\Rightarrow\sqrt{3}\left(a-b\right)\notinℤ\)
mà\(4-ab\inℤ\)
suy ra mâu thuẫn
TH2:\(a-b=0\Rightarrow a=b\Rightarrow4-a^2=4-b^2=0\Rightarrow a=b=2\)
Khi đó \(x=2-\sqrt{3}\)
Vậy........................................
\(M=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}-1\right)\)
\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(M=\frac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(M=\frac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(M=\frac{3\left(x+\sqrt{x}-2\right)}{x+\sqrt{x}-2}\)
\(M=3\)
\(x^2+x+1\) là số chính phương
\(\Rightarrow x^2+x+1=k^2\)
\(\Rightarrow4x^2+4x+1+3=4k^2\)
\(\Rightarrow4k^2-\left(2x+1\right)^2=3\)
\(\Rightarrow\left(2k+2x+1\right)\left(2k-2x-1\right)=3\)
Phương trình ước số cơ bản, bạn tự giải
số tự nhiên