Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABC\)cân tại \(A\)có \(AM\)là trung tuyến
\(\Rightarrow\)\(AM\)cũng là phân giác \(\widehat{BAC}\)
b) \(AM\)là phân giác \(\widehat{BAC}\)
\(\Rightarrow\)\(\widehat{BAD}=\widehat{CAD}\)
Xét \(\Delta ABD\) và \(\Delta ACD\) có:
\(AB=AC\) (gt)
\(\widehat{BAD}=\widehat{CAD}\) (cmt)
\(AD\) chung
suy ra: \(\Delta ABD=\Delta ACD\) (c.g.c)
c) \(\Delta ABD=\Delta ACD\)
\(\Rightarrow\)\(DB=DC\) (cạnh tương ứng)
\(\Rightarrow\)\(\Delta BCD\) cân tại \(D\)
a: Xét ΔABC có
BI là phân giác
CI là phân giác
DO đó: AI là tia phân giác của góc BAC
b: Xét ΔDIB có \(\widehat{DIB}=\widehat{DBI}\)
nên ΔDIB cân tại D
c: Xét ΔEIC có \(\widehat{EIC}=\widehat{ECI}\)
nên ΔEIC cân tại E
a: \(\widehat{A}=36^0\)
\(\widehat{B}=\widehat{C}=72^0\)
b: \(\widehat{ABD}=\dfrac{72^0}{2}=36^0\)
mà \(\widehat{BAD}=36^0\)
nên \(\widehat{ABD}=\widehat{BAD}\)
=>ΔBAD cân tại D
hay DA=DB