K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

khó quá, không giải được

14 tháng 7 2018

Em không chắc lắm

\(ĐKCĐ:a+b\ne0;a+c\ne0;b+c\ne0\)

\(\frac{x-ab}{a+b}+\frac{c-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\) (1)

\(\Leftrightarrow\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)

\(\Leftrightarrow\frac{x-ab-ac-bc}{a+b}+\frac{x-ac-ab-bc}{a+c}+\frac{x-bc-ab-ac}{b+c}=0\)

\(\Leftrightarrow\left(x-ab-bc-ac\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)

Phương trình (1) vô số nghiệm khi và chỉ khi \(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=0\) (2)

Ví dụ ta chọn a = 1 ; b = 1. Để (2) xảy ra ta chọn c sao cho:

\(\frac{1}{2}+\frac{1}{1+c}+\frac{1}{1+c}=0\Leftrightarrow\frac{2}{1+c}=\frac{1}{2}\Leftrightarrow c=-5\)

Vậy phương trình (1) vô số nghiệm chẳng hạn như a = 1; b = 1; c = -5

P/S: Em làm còn nhiều sai sót, mong các anh chị bỏ qua ạ

22 tháng 3 2019

kb nhé

8 tháng 5 2019

12345x331=...///???......................ai nhanh  mk tk cho

23 tháng 2 2020

b)\(VT-VP=\Sigma_{cyc}\left(a+b+1\right)\left(\frac{1}{8}\left(a+b-2\right)^2+\frac{3}{8}\left(a-b\right)^2\right)\)

P/s: Cách phân tích cụ thể xin phép giấu.

5 tháng 9 2017

\(x^{202}-2000y^{2001}=2005\)

\(x^{202}=\left(x^{101}\right)^2\)là SCP nên chia 8 dư 0,1,4

\(2000y^{2001}⋮8\)=> VT chia 8 dư 0,1,4

Mà VP=2005 chia 8 dư 5 

=> MT <=> Pt vô nghiệm

5 tháng 9 2017

Mình làm hơn lằng nhằn nha:

Ta có:\(x^{202}=\left(x^{101}\right)^2\)là 1 số chính phương.Mà sô chính phương có dạng 4k+1 hoặc 4k\(\rightarrow\left(x^{101}\right)^2⋮4\)hoặc  \(\div4\)dư 3 

Mà \(2000y^{2001}⋮4\)

\(\Rightarrow\left(x^{101}\right)^2+2000y^{2001}⋮4\)hoặc \(\div4\)dư 3

Mà \(2005\div4\)dư \(1\)

\(\Rightarrow\)Phương trình vô nghiệm

5 tháng 7 2019

Đặt f(x) = ax2 + bx + c

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

1 tháng 8 2017

4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)

\(6\sqrt{55}\)  là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa  \(\sqrt{55}\)

Đặt  \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\)  với  \(a,b\in N\)

\(\Rightarrow a+b=6\)

Xét các TH:

a = 0 => b = 6

a = 1 => b = 5

a = 2 => b = 4

a = 3 => b = 3

a = 4 => b = 2

a = 5 => b = 1

a = 6 => b = 0

Từ đó dễ dàng tìm đc x, y

3 tháng 8 2017

Biên cưng. Minh Quân đây. 

AH
Akai Haruma
Giáo viên
18 tháng 9 2023

Lời giải:

Từ $a+b> c\Rightarrow a+b-c>0$ (cái này hiển nhiên) 

Từ $|a-b|< c\Leftrightarrow |a-b|^2< c^2$

$\Leftrightarrow (a-b)^2< c^2$

$\Leftrightarrow (a-b-c)(a-b+c)<0$

Với $c>0$ thì $a-b-c< a-b+c$ nên để tích âm thì $a-b-c<0< a-b+c$

Hay $a-b-c<0$ và $a-b+c>0$

20 tháng 5 2019

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_-