K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

\(2x^2+y^2-6x+2xy-2y+5=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(x^2+2xy+y^2\right)-\left(2x+2y\right)+1=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(x+y\right)^2-2\left(x+y\right)+1=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(x+y-1\right)^2=0\)

\(\left(x-2\right)^2+\left(x+y-1\right)^2\ge0\forall x,y\)

Suy ra xảy ra khi \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(x+y-1\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\x+y-1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y+1=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy pt có nghiệm là \(\left(x;y\right)=\left(2;-1\right)\)

19 tháng 3 2021

ĐK: \(x\ge0\)

Dễ thấy \(1-\sqrt{2\left(x^2-x+1\right)}\le1-\sqrt{2}< 0\)

Khi đó bất phương trình tương đương:

\(x-\sqrt{x}\le1-\sqrt{2\left(x^2-x+1\right)}\)

\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(x+\dfrac{1}{x}-1\right)}\le0\)

\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2}\le0\)

\(\Leftrightarrow t-1+\sqrt{2t^2+2}\le0\)

19 tháng 3 2021

Nguyễn Ngọc Hôm trước có câu tương tự mà nhỉ.

17 tháng 12 2021

Câu 58: B

Câu 59: C

NV
23 tháng 1

ĐKXĐ: \(x\ge1\)

Đặt \(\left\{{}\begin{matrix}\sqrt[]{x-1}=a\ge0\\\sqrt[3]{2-x}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^3=1\)

Ta được hệ: 

\(\left\{{}\begin{matrix}a+b=1\\a^2+b^3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=1-a\\a^2+b^3=1\end{matrix}\right.\)

\(\Rightarrow a^2+\left(1-a\right)^3=1\)

\(\Leftrightarrow a^3-4a^2+3a=0\)

\(\Leftrightarrow a\left(a-1\right)\left(a-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[]{x-1}=0\\\sqrt[]{x-1}=1\\\sqrt[]{x-1}=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=10\end{matrix}\right.\)

5 tháng 5 2023

Để tìm tọa độ đỉnh B và điểm M, ta có thể sử dụng các thông tin sau:

M là trung điểm của BC, nghĩa là tọa độ của M bằng trung bình cộng của tọa độ của B và C.N là trung điểm của CD, nghĩa là tọa độ của C là (2, -2).Do ABCD là hình vuông nên độ dài các cạnh bằng nhau, suy ra AB = CD = BC = AD.Vì M có hoành độ nguyên, nên tọa độ của B và C cũng phải có hoành độ nguyên.

Từ đó, ta có thể tìm tọa độ của B như sau:

Đặt tọa độ của B là (x, y).Do AB = BC, suy ra x - 1 = 1 - y, hay x + y = 2.Do AB = CD = 2, suy ra tọa độ của A là (x - 1, y + 1) và tọa độ của D là (x + 1, y - 1).Vì đường thẳng AM có phương trình x+2y-2=0, nên điểm A nằm trên đường thẳng đó, tức là x - 2y + 2 = 0.Từ hai phương trình trên, ta giải hệ: x + y = 2 x - 2y + 2 = 0Giải hệ này ta được x = 2 và y = 0, suy ra tọa độ của B là (2, 0).

Tiếp theo, ta sẽ tìm tọa độ của M:

Đặt tọa độ của M là (p, q).Do M là trung điểm của BC, suy ra p = (x + r)/2 và q = (y + s)/2, với r, s lần lượt là hoành độ và tung độ của C.Ta đã biết tọa độ của C là (2, -2), suy ra r = 2 và s = -4.Từ AM có phương trình x+2y-2=0, suy ra p + 2q - 2 = 0.Với hoành độ nguyên của M, ta có thể thử các giá trị p = 1, 2, 3, ... và tính q tương ứng.Khi p = 2, ta có p + 2q - 2 = 2q = 2, suy ra q = 1.Vậy tọa độ của M là (2, 1).<đủ chi tiết luôn nhó>
4 tháng 10 2023

loading...  

11 tháng 4 2021

7.

Phương trình đường tròn \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\) với tâm \(I=\left(a;b\right)\), bán kính \(R\)

\(\Rightarrow\) Tâm đường tròn \(\left(x-1\right)^2+\left(y+2\right)^2=4\) có tọa độ \(\left(1;-2\right)\)

Kết luận: Tâm đường tròn có tọa độ \(\left(1;-2\right)\).

11 tháng 4 2021

9.

Cos đối, sin bù, phụ chéo, khác \(\pi\) tan, kém \(\dfrac{\pi}{2}\) chéo sin

\(sin\left(x+\dfrac{\pi}{2}\right)=sin\left(\dfrac{\pi}{2}-\left(-x\right)\right)=cos\left(-x\right)=cosx\)

Kết luận: \(sin\left(x+\dfrac{\pi}{2}\right)=cosx\)