K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

\(A=1+11+11^2+...+11^9\)

\(A=1+..1+...1+...+..1\)

                    10 số hạng

\(A=......0⋮5\left(đpcm\right)\)

18 tháng 9 2017

mk đang cần gấp người giải ai thấy bài này giải giúp mk nha 

6 tháng 9 2018

Sơ đồ con đường

Lời giải chi tiết

 

Xét  200 + a = 198 + 2 + a ⋮ 11

Áp dụng tính chất chia hết của một tổng ta có:

198 ⋮ 11 198 + 2 + a ⋮ 11 ⇒ 2 + a ⋮ 11

Mà  1 ≤ a ≤ 9 ⇒ a = 9  

 

15 tháng 12 2018

giúp với. Mink cho

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?