Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để x là căn bậc hai số học của số a không âm là x ≥ a và x2 = a.
Ví dụ 2 là căn bậc hai số học của 4 vì 2 > 0 và 22 = 4.
Để x là căn bậc hai số học của số a không âm là x ≥ a và x 2 = a .
Ví dụ 2 là căn bậc hai số học của 4 vì 2 > 0 và 2 2 = 4 .
Phân tích rõ một chút nhé :
- Căn bậc 2 của số x (bắt buộc là số x phải >=0 ) là \(\sqrt{x},-\sqrt{x}\)
Thì căn bậc 2 số học của x là \(\sqrt{x}\)(do\(\sqrt{x}\ge0\))
- Đối với trường hợp căn bậc 2 số học của x2 thì là |x|
Không phải là căn bậc hai số học là đứng độc lập 1 mình đâu bạn
Những trường hợp em nêu đều là CBHSH
$2\sqrt{3}$ là căn bậc 2 số học của $12$
$\sqrt{3}.\sqrt{4}$ là căn bậc 2 số học của $12$
$\sqrt{\frac{3}{4}}$ là căn bậc 2 số học $\frac{3}{4}$
Em cứ nhớ $\sqrt{x}$ (với $x$ là số không âm) là CBHSH của $x$, dù nó biểu diễn kiểu gì đi chăng nữa.
Căn bậc 2 của số a không âm là một số x sao cho x bình phương lên thì bằng a , x2=a