Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, đa thức đã cho \(\Leftrightarrow\left(2x-y\right)^2-2\left(2x-y\right)\left(x-y\right)+\left(x-y\right)^2=\left[\left(2x-y\right)-\left(x-y\right)\right]^2=\left(2x-y-x+y\right)^2=x^2\)
2, đa thức đã cho \(\Leftrightarrow\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2=\left[\left(x-y+z\right)+\left(y-z\right)\right]^2=\left(x-y+z+y-z\right)^2=x^2\)
--- giải chi tiết lắm rồi đó---
a, \(\left(2x-y\right)^2+2\left(2x-y\right)\left(y-x\right)+\left(x-y\right)^2\)
\(=4x^2-4xy+y^2+2\left(2xy-2x^2-y^2+xy\right)+x^2-2xy+y^2\)
\(=4x^2-4xy+y^2+4xy-4x^2-2y^2+2xy+x^2-2xy+y^2\)
\(=x^2\)
b, \(\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z\right)\left[1+2\left(y-z\right)\right]+y^2-2yz+z^2\)
\(=\left(x-y+z\right)\left(1+2y-2z\right)+y^2-2yz+z^2\)
\(=x+2xy-2xz-y-2y^2+2yz+z+2yz-2z^2+y^2-2yz+z^2\)
\(=x-y+z+2xy-2xz+2yz-y^2-z^2\)
Chúc bạn học tốt!!!
a)\(9x^2+30x+25+9x^2-30x+25-\left(9x^2-2^2\right)\)
=\(9x^2+54\)=\(9\left(x^2+6\right)\)
b)\(2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
=\(8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
=\(x^3-16x^2+25x\)
c)\(\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2\)
=\(\left(x+y-z-\left(x+y\right)\right)^2\)=\(\left(-z\right)^2\)
Sửa lại đề nha: x+y+z=0
a)
Xét x+y+z=0
(x+y+z)2=02
x2+y2+z2+2xy+2yz+2zx=0
=> x2+y2+z2=-2xy-2yz-2zx
Xét \(\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
= \(\dfrac{x^2+y^2+z^2}{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)}\)
=\(\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)
=\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2-2xy-2yz-2zx}\)(1)
Thay x2+y2+z2=-2xy-2yz-2zx vào (1)
=>\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2+x^2+y^2+z^2}\\=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2}\\ =\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}\\ =\dfrac{1}{3}\)
b)
Xét x+y+z=0 ba lần:
- Lần 1:x+y+z=0
<=> x+y=0-z
<=>(x+y)2=(0-z)2
<=>x2+2xy+y2=z2
<=>x2+y2-z2=-2xy(1)
-Lần 2: x+y+z=0
<=> y+z=0-x
<=>(y+z)2=(0-x)2
<=>y2+2yz+z2=x2
<=>y2+z2-x2=-2yz(2)
-Lần 3: x+y+z=0
<=>z+x=0-y
<=>(z+x)2=(0-y)2
<=>z2+2zx+x2=y2
<=> z2+x2-y2=-2zx(3)
Thay (1),(2),(3) vào Q, ta có:
=>\(\dfrac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{16xyz}=\dfrac{\left(-2xy\right)\left(-2yz\right)\left(-2zx\right)}{16xyz}\\=\dfrac{\left(-2yz\right)\left(-2zx\right)}{-8z}\\ =\dfrac{y\left(-2zx\right)}{4}\\ =\dfrac{-2xyz}{4}\\ =-\dfrac{xyz}{2}\)
a. Ta có:
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c+a-b\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)
và \(ab^2-ac^2-b^3+bc^2=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)=\left(a-b\right)\left(b-c\right)\left(b+c\right)\)
Vậy, \(A=\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}=\frac{c-a}{-c-b}=\frac{a-c}{c+b}\)
a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^3+1\right)-\left(x^3-1\right)\)
\(=x^3+1-x^3+1\)
\(=2\)
Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.
b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)
\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)
\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)
\(=27\)
Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.
c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)
\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
\(=-65\)
Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.
d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
\(=0\)
Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.
1: \(=\dfrac{\left(x^2+2xy+y^2\right)-1}{\left(x^2+2x+1\right)-y^2}\)
\(=\dfrac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}=\dfrac{x+y-1}{x-y+1}\)
2: \(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)
\(=\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{x^2-xy+y^2}\)
3: \(=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{2x^2+2y^2+2z^2-2xy-2yz-2xz}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{2\left(x^2+y^2+z^2-xy-yz-xz\right)}\)
\(=\dfrac{x+y+z}{2}\)
a) \(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)
\(=3\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-\left(x^2-y^2\right)\\ =3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\\=-10xy+2y^2 \)
b) \(3\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)
\(=3\left(4x^2+20x+25\right)-3\left(1+4x\right)\left(1-4x\right)\)
\(=12x^2+60x+75-3\left(1-16x^2\right)\)
\(=12x^2+60x+75-3+48x^2\)
\(=60x^2+60x+72\)
1) \(\left(x-y-z\right)^2-\left(y+z\right)^2=\left(x\right).\left(x-2y-2z\right)=x^2-2yx-2zx\) 2) \(\left(2x+y\right)^2-4x\left(2x+y\right)+4x^2\Leftrightarrow\left(2x+y\right)\left(2x+y-4x\right)+4x^2\)
\(=\left(2x+y\right)\left(y-2x\right)+4x^2=\left(y^2-4x^2\right)+4x^2=y^2-4x^2+4x^2=y^2\)
3) \(\left(x+y\right)^2-2\left(x^2-y^2\right)+\left(x-y\right)^2\)
\(=x^2+2xy+y^2-2x^2+2y^2+x^2-2xy+y^2\)
\(=4y^2=\left(2y\right)^2\)