Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=2xy-2yz^2+xy+\frac{1}{2}yz^2+2yz^2=3xy+\frac{1}{2}yz^2\)
\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)
\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)
\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)
\(A=2x^4y^4z^2\)
\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)
\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)
\(B=8x^7y^{y^8}z^6\)
\(A=\dfrac{-1}{5}x^3\cdot\dfrac{1}{32}x^{20}y^5\cdot\dfrac{64}{27}x^3y^9\cdot z^{2022}=-\dfrac{2}{135}x^{26}y^{14}z^{2022}\)
`A=\frac{-1}{5}x^3 \times \frac{1}{32}x^{20}y^5 \times \frac{64}{27}x^3y^9 \times z^{2022}=-\frac{2}{135}x^{26}y^{14}z^{2022}`
B =-4.x.y3 . (-x2.y)3 . (-2.x.y.z3)2
B=[ (-4) . (-2)] . [x . (-x2)3 . x2].(y3 . y3 . y2) . (z3)2
B=8 . (x.x6.x2) . y8 . z6 (vì lỹ thừa bậc chẵn của một số ko âm)
B=8 . x9 . y8 .z6
Chucs bạn học tốt
Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)
Tương tự:
\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)
\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)
\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)
\(=3xy-2yz^2+\dfrac{1}{2}yz^2+2yz^2\)
=\(3xy+\dfrac{1}{2}yz^2\)