Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ câu b) của hoạt động khám phá 1, ta có không gian mẫu là
\( \begin{array}{l}\Omega =\{\left( {1;1} \right);\left( {1;2} \right);\left( {1;3} \right);\left( {1;4} \right);\left( {1;5} \right);\left( {1;6} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {2;4} \right);\left( {2;5} \right);\left( {2;6} \right);\left( {3;1} \right);\left( {3;2} \right);\\\left( {3;3} \right);\left( {3;4} \right);\left( {3;5} \right);\left( {3;6} \right);\left( {4;1} \right);\left( {4;2} \right);\left( {4;3} \right);\left( {4;4} \right);\left( {4;5} \right);\left( {4;6} \right);\\\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right);\left( {5;4} \right);\left( {5;5} \right);\left( {5;6} \right);\left( {6;1} \right);\left( {6;2} \right);\left( {6;3} \right);\left( {6;4} \right);\left( {6;5} \right);\left( {6;6} \right)\}\end{array} \)
\(y=2+\dfrac{6}{x-3}\)
\(P=3x\left(2+\dfrac{6}{x-3}\right)+2x+2+\dfrac{6}{x-3}\)
\(P=8x+2+\dfrac{18x}{x-3}+\dfrac{6}{x-3}=8x+20+\dfrac{60}{x-3}\)
\(P=8\left(x-3\right)+\dfrac{60}{x-3}+44\ge2\sqrt{\dfrac{480\left(x-3\right)}{x-3}}+44=44+8\sqrt{30}\)
\(P_{min}=44+8\sqrt{30}\) khi \(8\left(x-3\right)=\dfrac{60}{x-3}\Leftrightarrow x=\dfrac{6+\sqrt{30}}{2}\)
Đúng đấy mik cũng học lớp ..... nên mik bít . Ủa mà mik học lớp mấy ta ?
a) Bình phương hai vế của phương trình\(\sqrt {{x^2} - 3x + 2} = \sqrt { - {x^2} - 2x + 2} \)ta được:
\({x^2} - 3x + 2 = - {x^2} - 2x + 2\)(1)
Giải phương trình trên ta có:
\((1) \Leftrightarrow 2{x^2} - x = 0\)
\( \Leftrightarrow x(2x - 1) = 0\)
\( \Leftrightarrow x = 0\) hoặc \(x = \frac{1}{2}\)
b) Thử lại ta có:
Với x=0, thay vào phương trình đã cho ta được: \(\sqrt {{0^2} - 3.0 + 2} = \sqrt { - {0^2} - 2.0 + 2} \Leftrightarrow \sqrt 2 = \sqrt 2 \) (luôn đúng)
Với \(x = \frac{1}{2}\), thay vào phương trình đã cho ta được:
\(\sqrt {{{\left( {\frac{1}{2}} \right)}^2} - 3.\frac{1}{2} + 2} = \sqrt { - {{\left( {\frac{1}{2}} \right)}^2} - 2.\frac{1}{2} + 2} \Leftrightarrow \sqrt {\frac{3}{4}} = \sqrt {\frac{3}{4}} \) (luôn đúng)
Vậy các giá trị x tìm được ở câu a thỏa mãn phương trình đã cho.
Tập hợp \(\Omega \) các kết quả có thể xảy ra của phép thử trên là \(\Omega = {\rm{ }}\{ 1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}4;{\rm{ }}5;{\rm{ }}6\} .\)
Các bạn làm tn câu này, m ra kq r nhưng thử lại sai :((
tìm x : 2x^2 + 3( x-1 ) ( x+1 ) = 5x ( x-1 )
\(2x^2+3\left(x^2-1\right)=5x^2-5x\)
\(2x^2+3x^2-3=5x^2-5x\)
\(5x^2-3=5x^2-5x\)
\(5x=3\)
\(x=\frac{3}{5}\)
f(x) = -x2 + 2x + 15
Đồ thị hàm số là parabol quay xuống dưới, đỉnh parabol tại điểm (1,16), parabol cắt trục hoành tại 2 điểm có hoành độ là -3 và 5 (bạn tự vẽ hình)
Nhìn vào đồ thị suy ra giá trị lớn nhất của f(x) trong [-3,5] là 16 (khi x = 1) và giá trị nhỏ nhất là 0 (khi x = -3 hoặc x=5)
TXĐ: \(x\ne\dfrac{5}{2}\)
\(y'=\dfrac{-11}{\left(2x-5\right)^2}< 0,\forall x\ne\dfrac{5}{2}\)
=> hàm số nghịch biến trên khoảng (-vô cực; 5/2) và (5/2;+ vô cực)
hoặc bạn có thể dùng cách 2 :
TXĐ x≠5/2
rồi bạn lập tỉ số \(A=\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}\)
+ nếu A>0 thì hs đb trên TXĐ
+ nếu A<0 thì hs nb trên TXĐ
P/s :ở đây theo mình nghĩ là A<0 nơi á :"))
a) Bình phương hai vế của phương trình \(\sqrt {26{x^2} - 63x + 38} = 5x - 6\) ta được:
\(26{x^2} - 63x + 38 = {(5x - 6)^2}\)
\( \Leftrightarrow 26{x^2} - 63x + 38 = 25{x^2} - 60x + 36\)
\( \Leftrightarrow {x^2} - 3x + 2 = 0\)
\( \Leftrightarrow x = 1\) hoặc \(x = 2\)
b) Thử lại:
Với x = 1 thay vào phương trình đã cho ta được:
\(\sqrt {{{26.1}^2} - 63.1 + 38} = 5.1 - 6\)
\( \Leftrightarrow 1 = - 1\)(vô lý)
Với x=2 thay vào phương trình đã cho ta được:
\(\sqrt {{{26.2}^2} - 63.2 + 38} = 5.2 - 6\)
\( \Leftrightarrow \sqrt {16} = 4 \Leftrightarrow 4 = 4\) (luôn đúng)
Vậy giá trị x=2 thỏa mãn phương trình đã cho.
Ví dụ về phép thử: Bốc bóng ngẫu nhiên từ trong hộp, bốc bài ngẫu nhiên từ trong bộ bài …..
Chỉ có BCNN thoi bn êy