Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
ĐKXĐ: \(x\notin\left\{2;3;\dfrac{1}{2}\right\}\)
Ta có: \(\dfrac{x+4}{2x^2-5x+2}+\dfrac{x+1}{2x^2-7x+3}=\dfrac{2x+5}{2x^2-7x+3}\)
\(\Leftrightarrow\dfrac{x+4}{\left(x-2\right)\left(2x-1\right)}+\dfrac{x+1}{\left(x-3\right)\left(2x-1\right)}=\dfrac{2x+5}{\left(2x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=\dfrac{\left(2x+5\right)\left(x-2\right)}{\left(2x-1\right)\left(x-3\right)\left(x-2\right)}\)
Suy ra: \(x^2-3x+4x-12+x^2-2x+x-2=2x^2-4x+5x-10\)
\(\Leftrightarrow2x^2-14=2x^2+x-10\)
\(\Leftrightarrow2x^2-14-2x^2-x+10=0\)
\(\Leftrightarrow-x-4=0\)
\(\Leftrightarrow-x=4\)
hay x=-4(nhận)
Vậy: S={-4}
a) 1/x(x + 1) + 1/(x + 1)(x + 2) + 1/(x + 2)(x + 3) + 1/(x + 3)(x + 4)
( 1/x - 1/x+1) + (1/x+1 - 1/x+2) + (1/x+2 - 1/ x+3) + 1/(x+3 - 1/x+4)
(1/x +1/x+4) - ( 1/x+2 - 1/x+2) - ( 1/x+3 - 1/x+3)
1/x +1/x+4
2x+4/x(x+4)
a) \(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}=\dfrac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
b) \(=\dfrac{1}{x+2}+\dfrac{3}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x+2\right)\left(x-2\right)+3\left(x+2\right)+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x+6}{\left(x+2\right)^2}\)
c) \(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{x^2-2xy+y^2+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
\(\dfrac{5x-1+x+1}{3x^2y}=\dfrac{6x}{3x^2y}=\dfrac{2}{xy}\)
\(\dfrac{21x^2+22y}{36x^3y^2}\)
\(\dfrac{x\left(4x-7\right)+7x-16}{\left(x+2\right)\left(4x-7\right)}=\dfrac{4x^2-16}{\left(x+2\right)\left(4x-7\right)}=\dfrac{4\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(4x-7\right)}=\dfrac{4x-8}{4x-7}=1-\dfrac{1}{4x-7}\)
\(\dfrac{x}{x+2}+\dfrac{7x-16}{\left(x+2\right)\left(4x-7\right)}\left(dkxd:x\ne-2;x\ne\dfrac{7}{4}\right)\)
\(=\dfrac{x\left(4x-7\right)+7x-16}{\left(x+2\right)\left(4x-7\right)}\)
\(=\dfrac{4x^2-7x+7x-16}{\left(x+2\right)\left(4x-7\right)}\)
\(=\dfrac{4x^2-16}{\left(x+2\right)\left(4x-7\right)}\)
\(=\dfrac{4\left(x^2-4\right)}{\left(x+2\right)\left(4x-7\right)}\)
\(=\dfrac{4\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(4x-7\right)}\)
\(=\dfrac{4\left(x-2\right)}{4x-7}\)
\(=\dfrac{4x-8}{4x-7}\)
===============================
\(\dfrac{x}{x-2}+\dfrac{2}{2-x}\left(dkxd:x\ne2\right)\)
\(=\dfrac{x}{x-2}-\dfrac{2}{x-2}\)
\(=\dfrac{x-2}{x-2}\)
\(=1\)
1, bạn xem lại đề
2, 15(x-3) + 8x-21 = 12(x+1) +120
<=> 23x - 66 = 12x + 132
<=> 11x = 198 <=> x = 198/11
3, 10(3x+1) + 5 - 100 = 8(3x-1) - 6x - 4
<=> 30x + 10 - 95 = 18x -12
<=> 12x = 73 <=> x = 73/12
a, \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)=\(\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\) = \(\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\) =\(\dfrac{x+y}{4}\)
a. \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\)
\(=\dfrac{x+y}{4}\)
b. \(\dfrac{x+5}{2x-2}-\dfrac{4}{x^2-1}:\dfrac{2}{x+1}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{\left(x+1\right)\left(x-1\right)}:\dfrac{2}{x+1}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{2}{x-1}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{2\left(x-1\right)}\)
\(=\dfrac{x+1}{2\left(x-1\right)}\)
a: \(\Leftrightarrow7\left(7-3x\right)+12\left(5x+2\right)=84\left(x+13\right)\)
\(\Leftrightarrow49-21x+60x+24=84x+1092\)
\(\Leftrightarrow39x-84x=1092-73\)
=>-45x=1019
hay x=-1019/45
b: \(\Leftrightarrow21\left(x+3\right)-14=4\left(5x+9\right)-7\left(7x-9\right)\)
=>21x+63-14=20x+36-49x+63
=>21x+49=-29x+99
=>50x=50
hay x=1
c: \(\Leftrightarrow7\left(2x+1\right)-3\left(5x+2\right)=21x+63\)
=>14x+7-15x-6-21x-63=0
=>-22x-64=0
hay x=-32/11
d: \(\Leftrightarrow35\left(2x-3\right)-15\left(2x+3\right)=21\left(4x+3\right)-17\cdot105\)
=>70x-105-30x-45=84x+63-1785
=>40x-150-84x+1722=0
=>-44x+1572=0
hay x=393/11
\(1\text{)}\left(x-5\right)^2+3\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-5+3\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(2\text{)}\dfrac{2x-1}{3}-\dfrac{5x+2}{7}=x+13\)
\(\Leftrightarrow\dfrac{7\left(2x-1\right)-3\left(5x+2\right)}{21}=\dfrac{21\left(x+13\right)}{21}\)
\(\Leftrightarrow14x-7-15x-6=21x+273\)
\(\Leftrightarrow-x-13=21x+273\)
\(\Leftrightarrow-22x=286\)
\(\Rightarrow x=-\dfrac{286}{22}=-\dfrac{143}{11}\)
\(3\text{)}\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{7x-6}{4-x^2}\left(đk:x\ne\pm2\right)\)
\(\Leftrightarrow\dfrac{x-1}{2+x}+\dfrac{x}{2-x}=\dfrac{7x-6}{4-x^2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(2-x\right)+x\left(2+x\right)}{4-x^2}=\dfrac{7x-6}{4-x^2}\)
\(\Leftrightarrow2x-x^2-2+x+2x+x^2=7x-6\)
\(\Leftrightarrow x-2=7x-6\)
\(\Leftrightarrow-6x=-4\)
\(\Rightarrow x=\dfrac{2}{3}\)
\(a,đk:x\ne0;4;1\)
\(\dfrac{x-1}{x^2-5x+4}-\dfrac{4}{x^2-4x}\\ =\dfrac{x-1}{\left(x-1\right)\left(x-4\right)}-\dfrac{4}{x\left(x-4\right)}\\ =\dfrac{x\left(x-1\right)}{x\left(x-1\right)\left(x-4\right)}-\dfrac{4\left(x-1\right)}{x\left(x-1\right)\left(x-4\right)}\\ =\dfrac{x^2-x-4x+4}{x\left(x-1\right)\left(x-4\right)}\\ =\dfrac{x^2-5x+4}{x.\left(x-1\right)\left(x-4\right)}=\dfrac{\left(x-1\right)\left(x-4\right)}{x.\left(x-1\right)\left(x-4\right)}=\dfrac{1}{x}\)
\(đk:x\ne-2;1\)
\(\dfrac{x}{x+2}+\dfrac{7x-16}{\left(x+2\right)\left(7x-7\right)}\\ =\dfrac{x\left(7x-7\right)}{\left(x+2\right)\left(7x-7\right)}+\dfrac{7x-16}{\left(x+2\right)\left(7x-7\right)}\\ =\dfrac{7x^2-7x+7x-16}{\left(x+2\right)\left(7x-7\right)}\\ =\dfrac{7x^2-16}{\left(x+2\right)\left(7x-7\right)}\)
a)
\(\dfrac{x-1}{x^2-5x+4}-\dfrac{4}{x^2-4x}\) \(ĐKXĐ:x\ne0;x\ne4;x\ne1\)
\(=\dfrac{x-1}{x^2-4x-x+4}-\dfrac{4}{x\left(x-4\right)}\)
\(=\dfrac{x-1}{x\left(x-4\right)-\left(x-4\right)}-\dfrac{4}{x\left(x-4\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x-4\right)}-\dfrac{4}{x\left(x-4\right)}\)
\(=\dfrac{x^2-x}{x\left(x-1\right)\left(x-4\right)}-\dfrac{4\left(x-1\right)}{x\left(x-1\right)\left(x-4\right)}\)
\(=\dfrac{x^2-x-4x+4}{x\left(x-1\right)\left(x-4\right)}\)
\(=\dfrac{x\left(x-1\right)-4\left(x-1\right)}{x\left(x-1\right)\left(x-4\right)}\)
\(=\dfrac{\left(x-1\right)\left(x-4\right)}{x\left(x-1\right)\left(x-4\right)}\\ =\dfrac{1}{x}\)
b)
\(\dfrac{x}{x+2}+\dfrac{7x-16}{\left(x+2\right)\left(7x-7\right)}\) \(ĐKXĐ:x\ne-2;x\ne1\)
\(=\dfrac{x\left(7x-7\right)}{\left(x+2\right)\left(7x-7\right)}+\dfrac{7x-16}{\left(x+2\right)\left(7x-7\right)}\)
\(=\dfrac{7x^2-7x+7x-16}{\left(x+2\right)\left(7x-7\right)}\)
\(=\dfrac{7x^2-16}{\left(x+2\right)\left(7x-7\right)}\)