K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

Bảng số liệu có 7 giá trị, sắp các giá trị theo thứ tự không giảm ta có:

650, 670, 690, 720, 840, 2500, 3000.

Vì số phần tử = 7 là số lẻ nên số trung vị là Me = 720 (số chính giữa của dãy).

Ý nghĩa: vì số trung bình cộng = 1295,71 cao hơn Me rất nhiều nên trong bài toán này thì sử dụng Me đại diện cho mức lương là hợp lý hơn.

21 tháng 6 2019

Bảng số liệu có 7 giá trị, sắp các giá trị theo thứ tự không giảm ta có:

650, 670, 690, 720, 840, 2500, 3000.

Vì số phần tử = 7 là số lẻ nên số trung vị là Me = 720 (số chính giữa của dãy).

Ý nghĩa:

Giải bài tập Toán lớp 10

Số trung bình này chênh lệch quá lớn so với các số liệu nên không đại diện được cho các số liệu.

Trong trường hợp này, số trung vị nên được chọn làm giá trị đại diện cho mức lương.

17 tháng 9 2019

- Mức lương bình quân của các cán bộ và nhân viên công ty là số trung bình của bảng lương:

- Số trung bình:

Giải bài 5 trang 130 SGK Đại Số 10 | Giải toán lớp 10

Sắp xếp các số liệu theo dãy tăng dần:

20060; 20110; 20350; 20350; 20910; 20960; 21130; 21360; 21410; 21410; 76000; 125000.

Số trung vị: Me = (20960 + 21130)/2 = 21045.

Ý nghĩa: Số trung vị đại diện cho mức lương trung bình của nhân viên (vì trong trường hợp này chênh lệch giữa các số liệu quá lớn nên không thể lấy mức lương bình quân làm giá trị đại diện).

26 tháng 4 2017

- Mức lương bình quân của các cán bộ và nhân viên công ty là số trung bình của bảng lương:

Giải bài 5 trang 130 SGK Đại Số 10 | Giải toán lớp 10

Ý nghĩa: Số trung vị phân chia dãy số liệu sắp thứ tự thành hai phần bằng nhau.

26 tháng 4 2017

- Mức lương bình quân của các cán bộ và nhân viên công ty là số trung bình của bảng lương:

Giải bài 5 trang 130 SGK Đại Số 10 | Giải toán lớp 10

Ý nghĩa: Số trung vị phân chia dãy số liệu sắp thứ tự thành hai phần bằng nhau.

19 tháng 12 2017

• Ta có:

- Số trung bình cộng x = 55,82 trường là không có nghĩa.

- Trong các số liệu thống kê đã cho có sự chênh lệch quá lớn (điều này chứng tỏ các số liệu thống kê đã cho là không cùng loại)

Chỉ cần một trong hai điều kể trên là đủ để suy ra rằng: Không chọn được số trung bình cộng làm đại diện cho các số liệu thống kê.

• Dễ thấy: Bảng số liệu thống kê đã cho không có mốt.

• Trong trường hợp đã cho, ta chọn số trung vị M e  = 40 (trường) để làm đại diện cho các số liệu thống kê đã cho (về quy mô và độ lớn).

Đáp án: B

24 tháng 9 2018

Trong bảng phân bố trên, hai giá trị 700 và 900 có cùng tần số lớn nhất là 6. Do đó ta có hai mốt là:

M0(1) = 700; M0(2) = 900.

Ý nghĩa:

+ Số công nhân có tiền lương 700.000đ/tháng và 900.000đ/tháng bằng nhau và chiếm đa số.

+ Tỉ lệ công nhân có mức lương 700 nghìn đồng / tháng và 900 nghìn đồng/ tháng cao hơn tỉ lệ công nhân có các mức lương khác.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Nhà máy A:

+) Số trung bình: \(\overline x  = \frac{{4 + 5 + 5 + 47 + 5 + 6 + 4 + 4}}{8} = 10\)

+) Mốt: \({M_o} = 4,{M_o} = 5\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 4; 4; 4; 5; 5; 5; 6; 47.

\({Q_2} = {M_e} = 5\)

\({Q_1}\) là trung vị của nửa số liệu: 4; 4; 4; 5. Do đó \({Q_1} = 4\)

\({Q_3}\) là trung vị của nửa số liệu: 5; 5; 6; 47. Do đó \({Q_3} = 5,5\)

+) Phương sai \({S^2} = \frac{1}{8}\left( {{4^2} + {5^2} + ... + {4^2}} \right) - {10^2} = 196\) => Độ lệch chuẩn \(S = \sqrt {{S^2}}  = 14\)

Nhà máy B:

+) Số trung bình: \(\overline x  = \frac{{2 + 9 + 9 + 8 + 10 + 9 + 9 + 11 + 9}}{9} = 8,4\)

+) Mốt: \({M_o} = 9\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 2; 8; 9; 9; 9; 9; 9; 10; 11

\({Q_2} = {M_e} = 9\)

\({Q_1}\) là trung vị của nửa số liệu: 2; 8; 9; 9. Do đó \({Q_1} = 8,5\)

\({Q_3}\) là trung vị của nửa số liệu: 9; 9; 10; 11. Do đó \({Q_3} = 9,5\)

+) Phương sai \({S^2} = \frac{1}{9}\left( {{2^2} + {9^2} + ... + {9^2}} \right) - 8,{4^2} = 6,55\) => Độ lệch chuẩn \(S = \sqrt {{S^2}}  = 2,56\)

b)

Nhà máy A có: \({\Delta _Q} = 1,5\)

Vậy giá trị ngoại lệ \(x > 5,5 + 1,5.1,5 = 7,75\) hoặc \(x < 4 - 1,5.1,5 = 1,75\) là 47.

Nhà máy B có: \({\Delta _Q} = 1\)

Vậy giá trị ngoại lệ \(x > 9,5 + 1,5.1 = 11\) hoặc \(x < 8,5 - 1,5.1 = 7\) là 2.

Ta so sánh trung vị: \(9 > 5\), do dó công nhân nhà máy B có mức lương cao hơn.

Chú ý

Ta không so sánh số trung bình vì có giá trị 47 quá lớn so với các giá trị còn lại.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Số điểm mà năm vận động viên bóng rổ ghi được trong một trận đấu:

9   8   15   8   20

Số trung bình: \(\overline X = \dfrac{{9 + 8 + 15 + 8 + 20}}{5} = 12\)

Trung vị:

Sắp xếp theo thứ tự không giảm:

8  8  9  15  20

Ta có n=5 là số lẻ nên trung vị là 9.

Mốt: Ta thấy số 8 là số có tần số cao nhất (xuất hiện 2 lần)

Tứ phân vị:

+ Tìm \({Q_2}\)

Ta có trung vị là 9=> \({Q_2} = 9\).

+ Tìm \({Q_1}\)

Nửa số liệu bên trái là:

8  8

Trung vị của mẫu này là \(\dfrac{{8 + 8}}{2} = 8\)=>\({Q_1} = 8\)

+ Tìm \({Q_3}\)

Nửa số liệu bên phải là:

15  20

Trung vị của mẫu này là \(\dfrac{{15 + 20}}{2} = 17,5\)=>\({Q_3} = 17,5\)

Vậy số trung bình là 12, trung vị là 9 và mốt là 8, \({Q_1} = 8\), \({Q_3} = 17,5\)

b) Giá của một số loại giày (đơn vị nghìn đồng):

350  300  650  300  450  500  300  250

Số trung bình: \(\overline X ) \( = \dfrac{{350 + 300.3 + 650 + 450 + 500 + 250}}{8}\) \( = 387,5\)

Trung vị:

Sắp xếp theo thứ tự không giảm:

250  300  300  300  350  450  500  650

Ta có n=8 là số chẵn nên trung vị là trung bình cộng của hai số chính giữa.

Hai số chính giữa là 300 và 350

=> Trung vị là \(\dfrac{{300 + 350}}{2} = 325\)

Mốt: Ta thấy số 300 là số có tần số cao nhất (xuất hiện 3 lần)

Tứ phân vị:

+ Tìm \({Q_2}\)

Ta có trung vị là 325=> \({Q_2} = 325\).

+ Tìm \({Q_1}\)

Vì n chẵn nên nửa số liệu bên trái là:

250  300  300  300

Trung vị của mẫu này là \(\dfrac{{300 + 300}}{2} = 300\)=>\({Q_1} = 300\)

+ Tìm \({Q_3}\)

Vì n chẵn nên nửa số liệu bên phải là:

350  450  500  650

Trung vị của mẫu này là \(\dfrac{{450 + 500}}{2} = 475\)=>\({Q_3} = 475\)

Vậy số trung bình là 387,5, trung vị là 325 và mốt là 300, \({Q_1} = 300\), \({Q_3} = 475\)

c) Số kênh được chiếu của một số hãng truyền hình cáp:

36  38  33  34  32  30  34  35

Số trung bình: \(\overline X = \dfrac{{36 + 38 + 33 + 34.2 + 32 + 30 + 35}}{8} = 34\)

Trung vị:

Sắp xếp theo thứ tự không giảm:

30  32  33  34  34  35  36  38

Ta có n=8 là số chẵn nên trung vị là trung bình cộng của hai số chính giữa.

Hai số chính giữa là 34 và 34

=> Trung vị là 34

Mốt: Ta thấy số 34 là số có tần số cao nhất (xuất hiện 2 lần)

Tứ phân vị:

+ Tìm \({Q_2}\)

Ta có trung vị là 34=> \({Q_2} = 34\).

+ Tìm \({Q_1}\)

Vì n chẵn nên nửa số liệu bên trái là:

30  32  33  34

Trung vị của mẫu này là \(\dfrac{{32 + 33}}{2} = 32,5\)=>\({Q_1} = 32,5\)

+ Tìm \({Q_3}\)

Vì n chẵn nên nửa số liệu bên phải là:

34  35  36  38

Trung vị của mẫu này là \(\dfrac{{35 + 36}}{2} = 35,5\)=>\({Q_3} = 35,5\)

Vậy số trung bình là 34, trung vị là 34 và mốt là 34, \({Q_1} = 32,5\), \({Q_3} = 35,5\)

Chú ý

Nếu n chẵn thì nửa số liệu bên trái (phải) \({Q_2}\) phải chứa cả \({Q_2}\)

5 tháng 12 2018

Chọn A.

Tháng 1 2 3 4 5 6 7 8 9 10 11 12  
Số khách 430 550 430 520 550 515 550 110 520 430 550 880 Cộng: 6035

Đơn vị điều tra: Số khách đến tham quan một điểm du lịch trong 12 tháng

Kích thước mẫu của số liệu: 6035

23 tháng 8 2019

a) Bảng phân bố tần số và tần suất:

Số con Tần số Tần suất
0 8 13,6%
1 13 22%
2 19 32,2%
3 13 22%
4 6 10,2%
Cộng 59 100%

b) Nhận xét: Hầu hết các gia đình có từ 1 đến 3 con.

Số gia đình có 2 con là nhiều nhất.

c) Số trung bình cộng:

Giải bài 3 trang 129 SGK Đại Số 10 | Giải toán lớp 10

Mốt: M0 = 2 (có tần số lớn nhất bằng 19).

Sắp xếp dãy số liệu theo thứ tự không giảm:

0; 0; 0; …; 0; 1; 1; ….; 1; 2; 2; …; 2; 3; 3; …; 3; 4; 4; …; 4

Có 59 số liệu nên số trung vị là số thứ 30 trong dãy trên.

Số thứ 30 là 2 nên số trung vị Me = 2.