Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng S của 5 chữ số lập từ tập trên luôn thỏa mãn
\(0+1+2+3+4\le S\le9+8+7+6+5\)
\(\Rightarrow10\le S\le35\)
Mà S chia hết cho 9 \(\Rightarrow S=\left\{18;27\right\}\) (lưu ý rằng 2 số này cộng lại đúng bằng 45, do đó giả sử nếu ta chọn được S=18 như 1;2;3;4;8 chia hết cho 5 thì phần còn lại chính là S=27 tương ứng)
Gọi tập S=18 là A, tập S=27 là B, ta chọn tập A:
TH1: A chứa 0 mà ko chứa 9, chọn 4 chữ số còn lại tổng 18:
- Các cặp 18; 27; 36; 45 tổng bằng 9 nên chọn 2 trong 4 cặp này có \(C_4^2=6\) cách
Hoán vị 5 chữ số tập A có \(5!-4!\) cách \(\Rightarrow6.\left(5!-4!\right)=576\) số tập A
Hoán vị 5 chữ số tập B tương ứng có \(5!\) cách \(\Rightarrow6.5!=720\) số tập B
- Các bộ 1467; 2358 tổng bằng 18, có 2 cách chọn 1 bộ
Hoán vị 5 chữ số tập A \(\Rightarrow2.\left(5!-4!\right)=192\) số
Hoán vị 5 chữ số tập B tương ứng: \(2.5!=240\) số
TH2: A chứa 9 mà ko chứa 0:
\(\Rightarrow\) Chọn 4 chữ số còn lại có tổng bằng 9, dễ dàng thấy ko có bộ nào thỏa mãn do 1+2+3+4>9
TH3: A chứa cả 0 lẫn 9:
\(\Rightarrow\) Tổng 3 chữ số còn lại bằng 9, ta có các bộ 126; 135; 234; có 3 bộ
Hoán vị 5 chữ số của A: \(3\left(5!-4!\right)=288\) số
Hoán vị 5 chữ số tập B: \(3.5!=360\) số
TH4: A ko chứa cả 0 lẫn 9:
Có các bộ 12348; 12357; 12456 tổng 3 bộ
Hoán vị tập A: có \(3.5!=360\) số
Hoán vị tập B : \(3.\left(5!-4!\right)=288\) số
\(\Rightarrow\text{576+720+192+240+288+360+360+288=3024}\) số
gọi các số cần tìm là n, thương của phép chia n là cho 9 là abc
theo bài ra ta có: n= 9.abc = 9.(a.100+b.10+c)= a.900+b.90+c.9
=> n>a.900 mà a> 1 => a.900>900
=> n>a.900>900
=> n>900
vì n chia hết cho 9 và 5 mà (9,5)=1
=> n chia hết cho 45
=> n=45.k
mà 900<n<1000 => 900< 45.k<1000 => 20<k<23
=> k = 21,22
=> n= 45.k = 945,990
vậy các số cần tìm là 945,990
Số chia hết cho 4 khi 2 chữ số tận cùng của nó chia hết cho 4, nên ý tưởng ở đây là chọn 2 số tận cùng trước.
Có \(\dfrac{96-04}{4}+1=24\) số có 2 chữ số chia hết cho 4 (tính cả những số bắt đầu bằng 0 như 04, 08...)
Loại ra 2 trường hợp 2 chữ số trùng nhau là \(44\) và \(88\), ta còn 22 chữ số.
Chia 22 chữ số này làm 2 loại: có chứa chữ số 0 bao gồm 6 số là 04, 08, 20, 40, 60, 80 và 16 số không chứa chữ số 0
- TH1: 2 chữ số cuối có chứa 0, chọn 3 chữ số còn lại từ 8 chữ số còn lại và hoán vị chúng có \(A_8^3\) cách \(\Rightarrow6.A_8^3\) số
- TH2: 2 chữ số cuối không chứa chữ số 0:
+ Chọn 3 chữ số còn lại 1 cách bất kì và hoán vị: \(A_8^3\) cách
+ Chọn 3 chữ số còn lại có mặt chữ số 0 và hoán vị sao cho số 0 đứng đầu: \(A_7^2\) cách
\(\Rightarrow16.\left(A_8^3-A_7^2\right)\) số
Cộng 2 trường hợp lại
TH1: chữ số hàng đơn vị là 4, khi đó hàng chục là 5
Chọn 2 chữ số còn lại và xếp vào 2 vị trí đầu có \(A_7^2=42\) cách
TH2: chữ số hàng đơn vị khác 4 \(\Rightarrow\) có 3 cách chọn từ 2, 6, 8
Chọn chữ số còn lại có 6 cách
Hoán vị chữ số đó và cặp 45: \(2!.2!=4\) cách
\(\Rightarrow3.6.4=72\) số
Tổng: \(42+72=114\) số
Sorry , mình quên mất . Đó là số có 3 chữ số và lớn hơn 300 một chút
Số số khác nhau có 3 chữ số: \(4.4.3=48\)
Chỉ có một bộ duy nhất có tổng chia hết cho 9 là 1;8;9, hoán vị 3 chữ số này có 3!=6 cách
Vậy có \(48-6=42\) số