Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để $\frac{6\sqrt{x}+2}{\sqrt{x}+2}=6-\frac{10}{\sqrt{x}+2}$ là scp thì nó phải có dạng $a^2$ (với $a\in\mathbb{N}$)
$\Leftrightarrow \frac{10}{\sqrt{x}+2}=6-a^2$
Hiển nhiên $\frac{10}{\sqrt{x}+2}>0$ nên $6-a^2>0$
$\Leftrightarrow a^2<6$. Vì $a\in\mathbb{N}$ nên $a=0,1,2$
$a=0\Leftrightarrow \frac{10}{\sqrt{x}+2}=6\Leftrightarrow \sqrt{x}=\frac{-1}{3}<0$ (loại)
$a=1\Leftrightarrow \frac{10}{\sqrt{x}+2}=5\Leftrightarrow \sqrt{x}+2=2\Leftrightarrow x=0$
$a=2\Leftrightarrow \frac{10}{\sqrt{x}+2}=2\Leftrightarrow \sqrt{x}+2=5\Leftrightarrow x=9$
Chắc pt đầu là x^2+mx+n (:))
Từ điều kiện ta có m khác p, n khác q
Gọi a là nghiệm chung của 2 pt=> a^2+ma+n=a^2+pa+q=0=> a(m-p)=q-n=>a=(q-n)/(m-p)
Mà m,n,p,q là các số hữu tỉ=> a là số hữu tỉ
Gọi b là nghiệm còn lại của pt (:))Theo hệ thức Vi-ét:a*b=n là số hữu tỉ=> b là số hữu tỉ
cmtt ta có nghiệm còn lại của pt còn lại cũng là số hữu tỉ