K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2015

số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên) 
39.k+14=37.k+2.k+14 chia cho 37 dư 1 
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên) 
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên ) 
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1 
2.k+14=38 
2.k=38-14=24 
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482

29 tháng 6 2016

Số tự nhiên a chia 37 dư 1 ; chia 39 dư 14 thì: a - 1 chia hết cho 37 và a - 14 chia hết cho 39. Khi đó:

  • a + 961 = (a - 1) + 37*26 chia hết cho 37
  • a + 961 = (a - 14) + 39*25 chia hết cho 39
  • Vậy a + 961 chia hết cho 37 và 39 và có dạng a + 961 = 37*39k = 1443k => a nhỏ nhất khi k = 1 và => a = 1443 - 961 = 482.

ĐS: a = 482.

14 tháng 9 2015

số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên) 
39.k+14=37.k+2.k+14 chia cho 37 dư 1 
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên) 
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên ) 
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1 
2.k+14=38 
2.k=38-14=24 
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482

vậy k =482

14 tháng 9 2015

số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên) 
39.k+14=37.k+2.k+14 chia cho 37 dư 1 
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên) 
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên ) 
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1 
2.k+14=38 
2.k=38-14=24 
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482

11 tháng 8 2019

Số đó chia cho 39 đc số dư là 14 nên số đó có dạng 39.k+14 ( với k thuộc N )

39.k+14=37.k+2.k+14:37 dư 1

Ta có: 37.k chia hết cho 37

Suy ra ( 2.k+14) là số nhỏ nhất :37 dư 1 ( với k là số tự nhiên)

Vậy ta có 2 trường hợp sau:

TH1: 2.k+14=1(1 là số nhỏ nhất :37 dư 1)( loại vì 2.k+14>1 với k là số tự nhiên)

TH2: 2.k+14=38 là số tiếp theo nhỏ nhất : 37 dư 1

2.k+14=38

2.k=38-14=24

k=24:2=12

Suy ra:

Số cần tìm là: 39.k+14=39.12+14=428

Chúc học tốt><

23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

3 tháng 12 2018

số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên) 
39.k+14=37.k+2.k+14 chia cho 37 dư 1 
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên) 
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên ) 
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1 
2.k+14=38 
2.k=38-14=24 
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482

cho mình và kb với mình

3 tháng 12 2018

ko hiểu sao 37k + 2k =14 chia 37 lại dư 1

22 tháng 7 2018

Gọi số cần tìm là a. Gọi thương của phép chia số a lần lượt cho 37, 39 là h, k.

Ta có: a = 37h + 1 ; a = 39k + 14 và h ≠ k

37h + 1 = 39k + 14

37h – 37k = 2k + 13

37(h – k) = 2k + 13

Vì 2k + 13 là số tự nhiên lẻ nên 37 ( h – k ) là số tự nhiên lẻ

Do đó: h – k là số tự nhiên lẻ, suy ra h – k ≥ 1

a là số nhỏ nhất nên k nhỏ nhất, khi đó 2k nhỏ nhất

Do đó h – k nhỏ nhất nên h – k = 1

Ta có : 2k + 13 = 37 . 1 ⇒ 2k = 24 ⇒ k = 12. Khi đó: a = 39 . 12 + 14 = 482

Vậy a = 482

17 tháng 2 2018

Gọi số cần tìm là a. Gọi thương của phép chia số a lần lượt cho 37, 39 là h, k.

Ta có: a = 37h + 1 ; a = 39k + 14 và h ≠ k

37h + 1 = 39k + 14

37h – 37k = 2k + 13

37(h – k) = 2k + 13

Vì 2k + 13 là số tự nhiên lẻ nên 37 ( h – k ) là số tự nhiên lẻ

Do đó: h – k là số tự nhiên lẻ, suy ra h – k ≥ 1

a là số nhỏ nhất nên k nhỏ nhất, khi đó 2k nhỏ nhất

Do đó h – k nhỏ nhất nên h – k = 1

Ta có : 2k + 13 = 37 . 1 ⇒ 2k = 24 ⇒ k = 12. Khi đó: a = 39 . 12 + 14 = 482

Vậy a = 482