Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên a chia 37 dư 1 ; chia 39 dư 14 thì: a - 1 chia hết cho 37 và a - 14 chia hết cho 39. Khi đó:
- a + 961 = (a - 1) + 37*26 chia hết cho 37
- a + 961 = (a - 14) + 39*25 chia hết cho 39
- Vậy a + 961 chia hết cho 37 và 39 và có dạng a + 961 = 37*39k = 1443k => a nhỏ nhất khi k = 1 và => a = 1443 - 961 = 482.
ĐS: a = 482.
Tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 37 dư 1 và khi chia số này cho 39 thì dư 14 .
số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên)
39.k+14=37.k+2.k+14 chia cho 37 dư 1
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên)
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên )
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1
2.k+14=38
2.k=38-14=24
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482
vậy k =482
số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên)
39.k+14=37.k+2.k+14 chia cho 37 dư 1
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên)
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên )
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1
2.k+14=38
2.k=38-14=24
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482
Số đó chia cho 39 đc số dư là 14 nên số đó có dạng 39.k+14 ( với k thuộc N )
39.k+14=37.k+2.k+14:37 dư 1
Ta có: 37.k chia hết cho 37
Suy ra ( 2.k+14) là số nhỏ nhất :37 dư 1 ( với k là số tự nhiên)
Vậy ta có 2 trường hợp sau:
TH1: 2.k+14=1(1 là số nhỏ nhất :37 dư 1)( loại vì 2.k+14>1 với k là số tự nhiên)
TH2: 2.k+14=38 là số tiếp theo nhỏ nhất : 37 dư 1
2.k+14=38
2.k=38-14=24
k=24:2=12
Suy ra:
Số cần tìm là: 39.k+14=39.12+14=428
Chúc học tốt><
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên)
39.k+14=37.k+2.k+14 chia cho 37 dư 1
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên)
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên )
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1
2.k+14=38
2.k=38-14=24
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482
cho mình và kb với mình
Gọi số cần tìm là a. Gọi thương của phép chia số a lần lượt cho 37, 39 là h, k.
Ta có: a = 37h + 1 ; a = 39k + 14 và h ≠ k
37h + 1 = 39k + 14
37h – 37k = 2k + 13
37(h – k) = 2k + 13
Vì 2k + 13 là số tự nhiên lẻ nên 37 ( h – k ) là số tự nhiên lẻ
Do đó: h – k là số tự nhiên lẻ, suy ra h – k ≥ 1
a là số nhỏ nhất nên k nhỏ nhất, khi đó 2k nhỏ nhất
Do đó h – k nhỏ nhất nên h – k = 1
Ta có : 2k + 13 = 37 . 1 ⇒ 2k = 24 ⇒ k = 12. Khi đó: a = 39 . 12 + 14 = 482
Vậy a = 482
Gọi số cần tìm là a. Gọi thương của phép chia số a lần lượt cho 37, 39 là h, k.
Ta có: a = 37h + 1 ; a = 39k + 14 và h ≠ k
37h + 1 = 39k + 14
37h – 37k = 2k + 13
37(h – k) = 2k + 13
Vì 2k + 13 là số tự nhiên lẻ nên 37 ( h – k ) là số tự nhiên lẻ
Do đó: h – k là số tự nhiên lẻ, suy ra h – k ≥ 1
a là số nhỏ nhất nên k nhỏ nhất, khi đó 2k nhỏ nhất
Do đó h – k nhỏ nhất nên h – k = 1
Ta có : 2k + 13 = 37 . 1 ⇒ 2k = 24 ⇒ k = 12. Khi đó: a = 39 . 12 + 14 = 482
Vậy a = 482
số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên)
39.k+14=37.k+2.k+14 chia cho 37 dư 1
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên)
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên )
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1
2.k+14=38
2.k=38-14=24
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482