Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng dtsbn:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{5+2}=\dfrac{-42}{7}=-6\)
\(=>\left\{{}\begin{matrix}x=-30\\y=-12\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{45}{7}\)
Do đó: x=90/7; y=225/7
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{45}{7}\)
Khi đó:
\(\dfrac{x}{2}=\dfrac{45}{7}\Rightarrow x=\dfrac{45}{7}.2=\dfrac{90}{7}\)
\(\dfrac{y}{5}=\dfrac{45}{7}\Rightarrow y=\dfrac{45}{7}.5=\dfrac{225}{7}\)
Bài 2:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: xy=12
\(\Leftrightarrow12k^2=12\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
Sửa đề câu b) x/3 = y/(-5) và 2x - 3y = -42
a) Ta có : x/2 = y/3 => x2/4 = y2/9
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x2/4 = y2/9 = (x2+y2)/(4+9) = 39/13 = 3
=> x2/4 = 3 => x2=12 => x = căn 12
Tương tự ta tìm được y = căn 27
b) Ta có : x/3 = y/(-5) => 2x/6 = 3y/(-15)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
2x/6 = 3y/(-15) = (2x - 3y) /{6-(-15)} = -42/21 = -2
Từ đó suy ra x = -6,y = 10
1: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x-y}{7-13}=\dfrac{42}{-6}=-7\)
=>x=-48; y=-91
2: x/y=3/4
=>4x=3y
=>4x-3y=0
mà 2x+y=10
nên x=3 và y=4
3: =>7x-3y=0 và x-y=-24
=>x=18 và y=42
4: =>7x-5y=0 và x+y=24
=>x=10 và y=14
Áp dụng tính chất của dãy tỉ só bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}=\dfrac{x+y+z+t}{2+3+4+5}=\dfrac{-42}{14}=-3\)
Do đó: x=-6; y=-9; z=-12; t=-15
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}=\dfrac{x+y+z+t}{2+3+4+5}=\dfrac{-42}{14}=-3\\ \Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\\z=-12\\t=-16\end{matrix}\right.\)
Dựa vào tỉ số bằng nhau ta đc:
a)\(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{16}{-1}=-16\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-16\\\frac{y}{3}=-16\end{cases}\Rightarrow}\hept{\begin{cases}x=-32\\y=-48\end{cases}}\)
Các câu kia tg tự nha
c)
\(\frac{4}{x}=\frac{6}{y}=\frac{x}{6}=\frac{y}{4}\) và x + y = 5
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{6}=\frac{y}{4}\Rightarrow\frac{x+y}{6+4}=\frac{5}{10}=\frac{1}{2}\)
\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1.6}{2}=3\)
\(\frac{y}{4}=\frac{1}{2}\Rightarrow y=\frac{1.4}{2}=2\)
Vậy...
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
áp dụng t/c dtsbn ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{42}{7}=6\)
\(\dfrac{x}{2}=6\Rightarrow x=12\\ \dfrac{y}{5}=6\Rightarrow y=30\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{42}{7}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.6=12\\y=5.6=30\end{matrix}\right.\)