Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Có \(ƯCLN\left(2y+5;3y+2\right)=x\) nên có:
\(\hept{\begin{cases}2y+5⋮x\\3y+2⋮x\end{cases}}\Rightarrow3\left(2y+5\right)-2\left(3y+2\right)⋮x\Rightarrow11⋮x\Rightarrow x\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Mà x > 10 => x = 11
Với x = 11, lại có y < 30
\(\Rightarrow2y+5< 65;2y+5⋮11\)
Các số bé hơn 65 và chia hết cho 11 là: 22; 33; 44; 55 và 3y + 2 cũng chia hết cho 11
Trường hợp 1: \(2y+5=11\)
\(\Rightarrow y=3\)
\(\Rightarrow3y+2=11⋮11\) (Thoả mãn)
Trường hợp 2: \(2y+5=22\)
\(\Rightarrow2y=17\) (Loại)
Trường hợp 3: \(2y+5=33\)
\(\Rightarrow y=14\)
\(\Rightarrow3y+2=44⋮11\) (Thoả mãn)
Trường hợp 4: \(2y+5=44\)
\(\Rightarrow2y=39\) (Loại)
Trường hợp 5: \(2y+5=55\)
\(\Rightarrow y=25\)
\(\Rightarrow3y+2=77⋮11\) (Thoả mãn)
Vậy x = 11 và \(y\in\left\{3;14;25\right\}\)
d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath
7\(x\) - 2y = 15
y =( 7\(x\) - 15) : 2
⇒ 7\(x\) - 15 ⋮ 2
⇒ \(x\) - 1 ⋮ 2
⇒ \(x\) = 2k + 1; k \(\in\) N
Vì y là số tự nhiên nên 7\(x\) - 15 ≥ 0 ⇒ \(x\) ≥ \(\dfrac{15}{7}\)
⇒ 2k + 1 ≥ \(\dfrac{15}{7}\)
k ≥ (\(\dfrac{15}{7}\) - 1 ) : 2
k ≥ \(\dfrac{8}{14}\) ⇒ k ≥ 1;
⇒ \(x\) = 2k + 1; k ϵ N*
y = \(\dfrac{7.\left(2k+1\right)-15}{2}\)
y = 7k - 4
Vậy câc cặp số tự nhiên \(x;y\) thỏa mãn đề bài là
(\(x;y\)) = (2k+1; 7k - 4); k \(\in\)N*