Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là : a ; b ; c Ta có : 5 a = 9 b ; 10 a = 7 c ⇒ 10 a = 18 b = 7 c
Ta gọi : 10 a ; 18 b ; 7 c = k Ta có : a = 10k b = 18k c = 7k BCNN (a;b;c) = k.10.9.7=630.k=3150
⇒k = 5 a = 10 . 5 = 50 b = 5 . 18 = 90 c = 5 . 7 = 35
Vậy số tự nhiên cần tìm là : 35 ; 50 và 90
Câu hỏi của Super man - Toán lớp 7 - Học toán với OnlineMath
1) Quy đồng tử số các phân số ta có:
6/7 = 18/21
9/11 = 18/22
2/3 = 18/27
Vậy:
18/21 số thứ nhất = 18/22 số thứ hai = 18/27 số thứ ba.
1/21 số thứ nhất = 1/22 số thứ hai = 1/27 số thứ ba.
Suy ra nếu chia số thứ nhất thành 21 phần bằng nhau thì số thứ hai sẽ gồm 22 phần và số thứ ba gồm 27 phần như thế.
Tổng số phần bằng nhau là:
21 + 22 + 27 = 70 ( phần )
Số thứ nhất là:
210 : 70 x 21 = 63
Số thứ hai là :
210 : 70 x 22 = 66
Số thứ ba là:
210 : 70 x 27 = 81
Vậy...
Gọi số thứ nhất, số thứ hai cần tìm là: \(a,b\left(0< a,b\right)\)
Theo đề bài ta có:
\(a^2+b^2=549\)
\(\frac{2}{3}a=\frac{5}{9}b\Leftrightarrow\frac{a}{\frac{5}{9}}=\frac{b}{\frac{2}{3}}\Leftrightarrow\frac{a^2}{\left(\frac{5}{9}\right)^2}=\frac{b^2}{\left(\frac{2}{3}\right)^2}\Leftrightarrow\frac{a^2}{\frac{25}{81}}=\frac{b^2}{\frac{4}{9}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{\frac{25}{81}}=\frac{b^2}{\frac{4}{9}}=\frac{a^2+b^2}{\frac{25}{81}+\frac{4}{9}}=\frac{549}{\frac{61}{81}}=729\)
\(\cdot\frac{a^2}{\frac{25}{81}}=729\Rightarrow a^2=225\Rightarrow a=15\)
\(\cdot\frac{b^2}{\frac{4}{9}}=729\Rightarrow b^2=324\Rightarrow b=18\)
Vậy 2 số cần tìm là 15 và 18