K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://olm.vn/hoi-dap/detail/92036248714.html

Xem ở link này ( mình gửi cho)

Học tốt!!!!!!!

30 tháng 10 2019

Ta có:

\(x^2+ax+b=\left(x+1\right)\cdot P\left(x\right)+6\)

\(x^2+ax+b=\left(x-2\right)\cdot Q\left(x\right)+3\)

Với \(x=-1\Rightarrow x^2+ax+b=6\Leftrightarrow1-a+b=6\Rightarrow-a+b=6\)

Với \(x=2\Rightarrow x^2+ax+b=6\Leftrightarrow4+2a+b=6\Leftrightarrow2a+b=2\)

Từ \(\left(1\right);\left(2\right)\Rightarrow-3a=4\Rightarrow a=-\frac{4}{3}\Rightarrow b=\frac{14}{3}\)

12 tháng 4 2022

-Áp dụng định lí Bezout:

\(P\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+7.\left(-1\right)^2+a.\left(-1\right)+b=0\)

\(\Rightarrow1+6+7-a+b=0\)

\(\Rightarrow a-b=14\left(1\right)\)

\(P\left(-2\right)=\left(-2\right)^4-6.\left(-2\right)^3+7.\left(-2\right)^2+a.\left(-2\right)+b=0\)

\(\Rightarrow16+48+28-2a+b=12\)

\(\Rightarrow2a-b=80\left(2\right)\)

-Từ (1) và (2) suy ra: \(a=66;b=52\)

13 tháng 4 2022

bạn ơi, tại sao lại là P(-2) ạ??

 

2 tháng 5 2019

AH
Akai Haruma
Giáo viên
18 tháng 8

Lời giải:

Theo định lý Bê-du về phép chia đa thức:

Số dư của $A(x)$ khi chia cho $x+1$ là:

$A(-1)=(-1)^3+a(-1)^2+b(-1)+2=-1+a-b+2=5$

$\Rightarrow a-b=4(1)$

Số dư của $A(x)$ khi chia cho $x+2$ là:
$A(-2)=(-2)^3+a(-2)^2+b(-2)+2=-8+4a-2b+2=8$

$\RIghtarrow 4a-2b=14$

$\Rightarrow 2a-b=7(2)$

Từ $(1); (2)\Rightarrow a=3; b=-1$

4 tháng 11 2017

Chia f(x) cho x+1 thì dư 6 => \(f\left(x\right)-6⋮x+1\)

hay \(x^2+ax+b-6⋮x+1\)

Làm tính chia đa thức ta được: \(\left(x^2+ax+b-6\right):\left(x+1\right)=x-1+a\)

và dư ra \(b-a-5\)

Mà phép tính trên chia hết \(\Rightarrow b-a-5=0\Leftrightarrow b-a=5\)(1)

Tương tự: \(x^2+ax+b-3⋮x-2\)

Ta có: \(\left(x^2+ax+b-3\right):\left(x-2\right)=x+2+a\)

dư ra \(2a+b+1\). Phép chia chia hết \(\Leftrightarrow2a+b+1=0\Leftrightarrow2a+b=-1\)(2)

Từ (1) và (2) \(\Rightarrow2a+b-\left(b-a\right)=-1-5\)

\(\Leftrightarrow2a+b-b+a=-6\)

\(\Leftrightarrow3a=-6\Rightarrow a=-2\)

\(\Rightarrow b=3\)

Thay \(a=-2,b=3\)vào \(f\left(x\right):\)

\(f\left(x\right)=x^2-2x+3\)

Vậy...

20 tháng 11 2021

Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)

\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)

Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)

Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)

9 tháng 4 2020

\(f(x) = 2x^3 + ax + b\)

Gọi \(f(x) = 2x^3 + ax+b = (x+1).Q(x) + 6 \)  (1)

\(f(x) = 2x^3 + ax + b = (x-2).H(x) + 21\)  (2)

Thay x = -1 vào (1) ta được : 

\(-2 - a + b = 6 => b-a = 8\)  (3)

Thay x = 2 vào (2) ta được : 

\(16+2a+b=21 => 2a + b = 5\)  (4)

Từ (3) và (4) \(=> b-a - 2a - b = 8-5 \)

\(=> -3a = 3 <=> a = -1 => b = 7\)

17 tháng 2 2015

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

17 tháng 2 2015

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?