Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:a:b:c=2:3:4
=>a/2=b/3=c/4
=>a/2=2b/6=3c/12
theo t/c dãy tỉ số =nhau ta có:
a/2=2b/6=3c/12=a+2b-3c/2+6-12=-20/-4=5
=>a=10
=>b=15
=>c=20
kick nhé
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
Câu a, b, c giống dạng nhau nên mình làm một câu a và câu d thôi nha, bạn tham khảo ^^
Giải:
a) \(a=\dfrac{b}{2}=\dfrac{c}{3}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(a=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a-b+c}{1-2+3}=\dfrac{10}{2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.1=5\\b=2.5=10\\c=3.5=15\end{matrix}\right.\)
b) \(a:b:c=3:4:5\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a^2}{9}=\dfrac{b^2}{16}=\dfrac{c^2}{25}\)
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}=\dfrac{2a^2+2b^2-3c^2}{18+32-75}=\dfrac{-100}{-25}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=\dfrac{4.18}{2}=36\\b^2=\dfrac{4.32}{2}=64\\c^2=\dfrac{4.75}{3}=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\pm6\\b=\pm8\\c=\pm10\end{matrix}\right.\)
1.
a:b:c:d = 2:3:4:5 => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
=> a = -3.2 = -6
b = -3.3 = -9
c = -3.4 = -12
d = -3.5 = -15
2.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{18}=\frac{a+2b-3c}{2+6-18}=-\frac{20}{-10}=2\)
=> a = 4
b = 6
c = 8
3.
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> a2 = 4.4 = 16 => a = +-4
b2 = 4.9 = 36 => b = +-6
2c2 = 4.32 = 128 => c2 = 64 => c = +-8
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
\(=>\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Khi đó : \(2a^2+2b^2-3c^2=-100\)
\(< =>2\left(3k\right)^2+2\left(4k\right)^2-3\left(5k\right)^2=-100\)
\(< =>2.9.k^2+2.16.k^2-3.25.k^2=-100\)
\(< =>19k^2+32k^2-75k^2=-100\)
\(< =>k^2\left(51-75\right)=-100\)
\(< =>-24k^2=-100\)
\(< =>k^2=\frac{25}{6}\)\(< =>k=\pm\frac{5}{\sqrt{6}}\)
Với \(k=\frac{5}{\sqrt{6}}\)thì \(\hept{\begin{cases}a=\frac{15}{\sqrt{6}}\\b=\frac{20}{\sqrt{6}}\\c=\frac{25}{\sqrt{6}}\end{cases}}\)
Với \(k=-\frac{5}{\sqrt{6}}\)thì \(\hept{\begin{cases}a=-\frac{15}{\sqrt{6}}\\b=-\frac{20}{\sqrt{6}}\\c=-\frac{25}{\sqrt{6}}\end{cases}}\)
Vậy ta có 2 bộ số sau \(\left\{\frac{15}{\sqrt{6}};\frac{20}{\sqrt{6}};\frac{25}{\sqrt{6}}\right\};\left\{-\frac{15}{\sqrt{6}};-\frac{20}{\sqrt{6}};-\frac{25}{\sqrt{6}}\right\}\)