Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số tự nhiên a,b thỏa mãn điều kiện:
\(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và 8b-9a=31
Từ \(8b-9a=31\Leftrightarrow8b=9a+31\)
Ta có: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\Rightarrow\left\{{}\begin{matrix}17a>11b\\29a< 23b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}17.8a>11.8b\\29.8a< 23.8b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}136a>11\left(9a+31\right)\\232a< 23\left(9a+31\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}136a>99a+341\\232a< 207a+713\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}37a>341\\25a< 713\end{matrix}\right.\)
\(\Rightarrow\dfrac{341}{37}< a< \dfrac{713}{25}\)
Mà a là số tự nhiên \(\Rightarrow9< a< 29\) (1)
Lại có \(8b-9a=31\Leftrightarrow8\left(b-a\right)=a+31\)
\(\Rightarrow a+31\) chia hết cho 8 \(\Rightarrow a\) chia 8 dư 1 (2)
(1);(2) \(\Rightarrow\left[{}\begin{matrix}a=17\\a=25\end{matrix}\right.\)
Với \(a=17\Rightarrow b=23\)
Với \(a=25\Rightarrow b=32\)
Giải:
Theo đề bài: \(8b-9a=31\)
\(\Rightarrow b=\dfrac{31+9a}{8}=\dfrac{32-1+8a+a}{8}\)
\(=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\in N\Leftrightarrow\dfrac{a-1}{8}\in N\)
\(\Leftrightarrow\left(a-1\right)⋮8\Leftrightarrow a=8k+1\left(k\in N\right)\)
Khi đó:
\(b=\dfrac{31+9\left(8k+1\right)}{8}=9k+5\) \(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)
\(\Leftrightarrow\left\{{}\begin{matrix}11\left(9k+5\right)< 17\left(8k+1\right)\Leftrightarrow k>1\\29\left(8k+1\right)< 23\left(9k+5\right)\Leftrightarrow k< 4\end{matrix}\right.\)
\(\Leftrightarrow k\in\left\{2;3\right\}\)
Với \(\left[{}\begin{matrix}k=2\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\\k=3\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\end{matrix}\right.\)
Vậy...
tìm các số nguyên a ,b thỏa mãn điều kiện:\(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}và8b-9a=31\)
Giải:
Ta biết: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và \(8b-9a=31\) \(\left(a;b\in N\right)\)
Theo đề bài: \(8b-9a=31\)
\(\Rightarrow b=\dfrac{31+9a}{8}=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\in N\)
\(\Leftrightarrow\dfrac{a-1}{8}\in N\)
\(\Leftrightarrow\left(a-1\right)⋮8\)
\(\Leftrightarrow a=8k+1\left(k\in N\right)\)
Khi đó:
\(b=\dfrac{31+9.\left(8k+1\right)}{8}=9k+5\)
\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)
\(\Leftrightarrow\left\{{}\begin{matrix}11.\left(9k+5\right)< 17.\left(8k+1\right)\Leftrightarrow k>1\\29.\left(8k+1\right)< 23.\left(9k+5\right)\Leftrightarrow k< 4\end{matrix}\right.\)
\(\Rightarrow1< k< 4\)
\(\Rightarrow k\in\left\{2;3\right\}\)
Với \(\left[{}\begin{matrix}k=2\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\\k=3\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(17;23\right);\left(25;32\right)\)
Do 2n+12n+1 là số chính phương lẻ nên 2n+12n+1 chia 88 dư 11,vậy nn là số chẵn.
Vì 3n+13n+1 là số chính phương lẻ nên 3n+13n+1 chia 88 dư 11
⟹3n⋮8⟹3n⋮8
⟺n⋮8(1)⟺n⋮8(1)
Do 2n+12n+1 và 3n+13n+1 đều là số chính phương lẻ có tận cùng là 1;5;91;5;9.do đó khi chia cho 55 thì có số dư là 1;0;41;0;4
Mà (2n+1)+(3n+1)=5n+2(2n+1)+(3n+1)=5n+2 ,do đo 2n+12n+1 và 3n+13n+1 khi cho cho 55 đều dư 11
⟹n⋮5(2)⟹n⋮5(2)
Từ (1) và (2)⟹n⋮40⟹n⋮40
Vậy n=40kn=40k thì ...
mình lớp 5 mong bạn tích
Vì 8a - 9b = 31 \(\Rightarrow\) a > b \(\Rightarrow\)\(\dfrac{a}{b}>1\)
Mà \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\)
\(\Rightarrow\) không có cặp (a,b) nào thỏa mãn
Ta có: \(8b-9a=31\)
\(\Rightarrow8b=31+9a\)
\(\Rightarrow b=\dfrac{31+9a}{8}\)
\(\Rightarrow b=\dfrac{32+8a+a-1}{8}\)
\(\Rightarrow b=\dfrac{8\cdot\left(4+a\right)+a-1}{8}\)
\(\Rightarrow b=4+a+\dfrac{a-1}{8}\)
Để \(b\in N\) thì:
\(\dfrac{a-1}{8}\in N\)
\(\Rightarrow a-1⋮8\)
\(\Rightarrow a-1=8k\left(k\in N\right)\)
\(\Rightarrow a=8k+1\)
Khi đó: \(b=4+8k+1+\dfrac{8k+1-1}{8}\)
\(\Rightarrow b=5+8k+\dfrac{8k}{8}\)
\(\Rightarrow b=5+8k+k\)
\(\Rightarrow b=5+9k\)
Mặt khác: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\)
\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{5+9k}< \dfrac{23}{29}\)
Xét: \(\dfrac{11}{17}< \dfrac{8k+1}{5+9k}\)
\(\Rightarrow11\left(5+9k\right)< 17\left(8k+1\right)\)
\(\Rightarrow55+99k< 136k+17\)
\(\Rightarrow136k-99k>55-17\)
\(\Rightarrow37k>38\)
\(\Rightarrow k>\dfrac{38}{37}\left(1\right)\)
Xét: \(\dfrac{8k+1}{5+9k}< \dfrac{23}{29}\)
\(\Rightarrow29\left(8k+1\right)< 23\left(5+9k\right)\)
\(\Rightarrow232k+29< 115+207k\)
\(\Rightarrow232k-207k< 115-29\)
\(\Rightarrow25k< 86\)
\(\Rightarrow k< \dfrac{86}{25}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\dfrac{38}{27}< k< \dfrac{86}{25}\)
Mà \(k\in N\)
\(\Rightarrow k\in\left\{2;3\right\}\)
\(+,\) \(k=2\).
\(\Rightarrow\left\{{}\begin{matrix}a=8\cdot2+1=17\\b=5+9\cdot2=23\end{matrix}\right.\)
\(+,\) \(k=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=8\cdot3+1=25\\b=5+9\cdot3=32\end{matrix}\right.\)
\(\Rightarrow\) Vậy \(\left(a;b\right)\in\left\{\left(17;23\right),\left(25;32\right)\right\}\)