K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1

\(5^{2009}=5^{2000}\cdot5^9\)
Ta có: \(5^{2000}\equiv1\) (\(mod\) \(10000\))
          \(5^9\equiv3125\) (\(mod\) \(10000\))
\(\Rightarrow5^{2000}\cdot5^9\equiv1\cdot3125\) (\(mod\) \(10000\))
\(\Rightarrow5^{2009}\equiv3125\) (\(mod\) \(10000\))
Vậy \(4\) chữ số tận cùng của \(5^{2009}\) là \(3125\) 

7 tháng 1

Bạn xem lại đề, \(5^2009\) hay \(5^{2009}\)?

24 tháng 10 2017

Vì chữ số tận cùng của \(a^2\)là 4 nên chữ số tận cùng của \(a\)là 2 hoặc 8.

Nếu chữ số tận cùng của \(a\)là 2 thì 2 số tận cùng của a có dạng \(\overline{x2}\)

\(\overline{x2}=10x+2\)

\(\Rightarrow\left(\overline{x2}\right)^2=\left(10x+2\right)^2=100x^2+40x+4\equiv40x+4\left(mod100\right)\equiv64\left(mod100\right)\)

Ta có: 

\(40.1+4\le40x+4\le40.9+4\)

\(\Leftrightarrow44\le40x+4\le364\)

\(\Rightarrow\left(40x+4\right)=\left(64;164;264;364\right)\)

\(\Rightarrow x=\left(4;9\right)\)

Hai số tận cùng của a là: 42; 92.

Tương tự cho trường hợp còn lại.

24 tháng 10 2017

58 nha

23 tháng 11 2015

đừng có tick cho phan hong phuc

23 tháng 11 2015

20112010 có chữ số tận cùng là 1 vì 2011 có tận cùng là 1 nên mũ mấy lên cũng tận cùng bằng 1

25 tháng 11 2015

24682đồng dư với 24 mod 100 xét mod 100 nhé
24684  đồng dư với 242 đồng dư với 76
=> 24684.503=24682012 đồng dư với 76503
Vì 76n với n thuộc N luôn tận cùng là 76
=> 24682012 tận cùng là 76
=>24682013 tận cùng là 68 vì (76x2468=187568 tận cùng là 68)

 

25 tháng 11 2015

24682013=24682012.2468=(24684)503.2048=(....6).2468=....8

**** mk nha Tuấn