K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P(x)=ax^3+bx+c

Hệ số cao nhất là 4 nên a=4

=>P(x)=4x^3+bx+c

Hệ số tự do là 0 nên P(x)=4x^3+bx

P(1/2)=0

=>4*1/8+b*1/2=0

=>b=-1

=>P(x)=4x^3-x

\(\left(-3a^3xy^3\right).\left(-\frac{1}{2}ax^2\right)^3\)

\(=\left(-3a^3xy^3\right).\left(-\frac{1}{2}\right)^3.a^3x^5 \)

\(=[-\frac{1}{8}.\left(-3\right)].\left(a^3.a^3\right).\left(x.x^5\right).y^3\)

\(=\frac{3}{8}a^6x^6y^3\)

À bạn ơi bậc là 15 nhé :vv

25 tháng 4 2021

mình cần GẤP NHA!!!

 

25 tháng 4 2021

\(P(x)=4x^2-1\)

\(4x^2-1=0\)

\(\Leftrightarrow 4x^2=1\)

\(\Leftrightarrow x^2=\frac{1}{4}\)

\(\Rightarrow\left[\begin{array}{} x=\frac{1}{2}\\ x=\frac{-1}{2} \end{array} \right.\)

Vậy đa thức có nghiệm: \(x=\frac{1}{2};x=\frac{-1}{2}\)

 

8 tháng 5 2023

Em ghi đề thiếu!

Bậc là 2

Hệ số khác 0 là 4 và -2018

30 tháng 3 2019

a) 3/2a4x3y3

b) Đa thức A có bậc 4

31 tháng 5 2020

mình ngu quá

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Đa thức bậc nhất có hệ số của biến bằng – 2 và hệ số tự do bằng 6 tức \(a =  - 2;b = 6\)

\( - 2x + 6\).

b) Đa thức bậc hai có hệ số tự do bằng 4: \({x^2} + x + 4\).

c) Đa thức bậc bốn có hệ số của lũy thừa bậc 3 của biến bằng 0: \({x^4} + 0.{x^3} + {x^2} + 1 = {x^4} + {x^2} + 1\).

d) Đa thức bậc sáu trong đó tất cả hệ số của lũy thừa bậc lẻ của biến đều bằng 0: \({x^6} + 0.{x^5} + {x^4} + 0.{x^3} + {x^2} + 0.x = {x^6} + {x^4} + {x^2}\). 

a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)

\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)

\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)

Để H có bậc là 6 thì 6-A=0

=>A=6

b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)

\(=3x^4y^2+3x^2y^2\)

\(=3x^2y^2\left(x^2+1\right)\)

\(x^2+1>1>0\forall x\ne0\)

\(x^2>0\forall x\ne0\)

\(y^2>0\forall y\ne0\)

Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>H luôn dương khi x,y khác 0