K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

2011||x2−y|−8|+y2−1=12011||x2−y|−8|+y2−1=1

⇔||x2−y|−8|+y2−1=0⇔||x2−y|−8|+y2−1=0

⇔||x2−y|−8|+y2=1⇔||x2−y|−8|+y2=1

Do x;y∈Z⇒||x2−y|−8|∈N;y2∈Nx;y∈Z⇒||x2−y|−8|∈N;y2∈N

Do y∈Z⇒y2y∈Z⇒y2 là số chính phương

Mà 1=0+11=0+1 nên ta có 22 trường hợp xảy ra

-Trường hợp 1: {||x2−y|−8|=1(1)y2=0(2){||x2−y|−8|=1(1)y2=0(2) 

(2)⇔y=0(2)⇔y=0

Thay yy vào (1)(1) ta được: 

||x2−0|−8|=1⇔||x2|−8|=1||x2−0|−8|=1⇔||x2|−8|=1

⇔|x2−8|=1⇔[x2−8=1x2−8=−1⇔|x2−8|=1⇔[x2−8=1x2−8=−1

⇔[x2=9x2=7⇔[x=±3x=±√7⇔[x2=9x2=7⇔[x=±3x=±7

Mà x∈Z⇒x=±3x∈Z⇒x=±3

-Trường hợp 2:

{||x2−y|−8|=0(3)y2=1(4)⇔{|x2−y|−8=0(3)y=±1{||x2−y|−8|=0(3)y2=1(4)⇔{|x2−y|−8=0(3)y=±1 

+Nếu y=1,y=1, thay vào (3)(3) ta được:

|x2−1|−8=0⇔|x2−1|=8|x2−1|−8=0⇔|x2−1|=8

⇔[x2−1=8x2−1=−8⇔[x2=9x2=−7(loại)⇔[x2−1=8x2−1=−8⇔[x2=9x2=−7(loại)

⇔x2=9⇔x=±3⇔x2=9⇔x=±3 (thỏa mãn)

+Nếu y=−1,y=−1, thay vào (3)(3) ta được:

| x2+1 | = 0⇔x2+1=8⇔x2=7|x2+1|−8=0⇔x2+1=8⇔x2=7

⇔x=±√7⇔x=±7 (không thỏa mãn)

8 tháng 8 2018

\(^{\text{(x+1+y+1+x+y)}^2}\)=2

\(^{\text{(x+1+y+1+x+y)}^2}\) =\(^{2^2}\)

x+1+y+1+x+y=2

(x+x)+(y+y)+(1+1)=2

x.2+y.2+2=2

2.(x+y+1)=2

x+y+1=2:2

x+y+1=1

x+y=1-1

x+y=0

=>x;y=0

4 tháng 5 2018

Trả lời

\(\frac{x-1}{4}-\frac{1}{y+3}=\frac{1}{2}\)

\(\Rightarrow\frac{x-1}{4}-\frac{1}{2}=\frac{1}{y+3}\)

\(\Rightarrow\frac{x-1}{4}-\frac{2}{4}=\frac{1}{y+3}\)

\(\Rightarrow\frac{x-1-2}{4}=\frac{1}{y+3}\)

\(\Rightarrow\frac{x-3}{4}=\frac{1}{y+3}\)

\(\Rightarrow\left(x-3\right)\left(y+3\right)=4\)

Vì \(x,y\inℕ\)\(\Rightarrow x-3;y+3\inℕ\)

\(\Rightarrow x-3;y+3\inƯ\left(4\right)=\left\{1;2;4\right\}\)

Ta có bảng giá trị

x-3124
y+3421
x457
y1-1-2

Đối chiếu điều kiện \(x,y\inℕ\)

Vậy \(\left(x;y\right)\in\left\{\left(4;1\right)\right\}\)